Combining Decision Making and Trajectory Planning for Lane Changing Using Deep Reinforcement Learning

超车 强化学习 弹道 计算机科学 集合(抽象数据类型) 背景(考古学) 运动规划 航程(航空) 人工智能 工程类 运输工程 机器人 古生物学 物理 天文 生物 程序设计语言 航空航天工程
作者
Shurong Li,Chong Wei,Ying Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 16110-16136 被引量:20
标识
DOI:10.1109/tits.2022.3148085
摘要

In the context of Automated Vehicles, the Automated Lane Change system, is fundamentally based upon the separate constructs of Perception, Decision making, Trajectory Planning, and Execution. However, in existing works there are many simplistic and unplausible assumptions in applying these constructs that severely restrict their operational effectiveness in realistic and complex driving scenarios. For instance, there are rigid assumptions about the disposition of vehicles and that lane-changing maneuvers can occur instantaneously, but that highly desirable features such as the ability for real-time trajectory re-planning are lacking. In this paper, we address these limitations through an integrated methodology for lane-change decision making and trajectory planning, in which a deep Reinforcement Learning algorithm with a safe action set technique is employed in decision making that is effectively coupled to a specially devised trajectory planning model. The proposed new methodology is computationally efficient, supporting real-time implementation, and provides for lane-changing maneuvers that can be made simultaneously with other vehicles and can be dynamically re-planned; thus, enabling flexible, robust, and safe lane-changing maneuvers under the guidance of a new decision-making module. Finally, the veracity of the proposed methodology in guiding a vehicle to improve travel times and accomplish high-level driving behaviors such as overtaking and desired-speed maintenance in a range of road traffic scenarios is demonstrated in a number of numerical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拿铁五分糖完成签到,获得积分10
1秒前
空军完成签到 ,获得积分10
1秒前
萌萌发布了新的文献求助10
3秒前
3秒前
3秒前
Hengjian_Pu发布了新的文献求助10
7秒前
8秒前
8秒前
Rondab应助shisui采纳,获得20
9秒前
田様应助元气少女岳云鹏采纳,获得10
9秒前
李爱国应助北风采纳,获得10
10秒前
Crazy111发布了新的文献求助10
13秒前
13秒前
linkman发布了新的文献求助10
13秒前
13秒前
Sandy应助morena采纳,获得10
14秒前
14秒前
tomorrow发布了新的文献求助30
14秒前
老子就是杀猪的完成签到,获得积分10
15秒前
shi完成签到,获得积分10
15秒前
1111sss完成签到,获得积分10
15秒前
满满发布了新的文献求助50
16秒前
jenningseastera应助李物采纳,获得20
16秒前
16秒前
yyy完成签到,获得积分10
17秒前
18秒前
riceyellow完成签到,获得积分10
19秒前
yulong完成签到 ,获得积分10
19秒前
jenningseastera应助李物采纳,获得20
20秒前
汉堡包应助nml采纳,获得10
20秒前
20秒前
完美世界应助sxp1031采纳,获得10
21秒前
充电宝应助wml采纳,获得10
22秒前
orixero应助韵寒采纳,获得10
22秒前
23秒前
jenningseastera应助李物采纳,获得20
23秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
25秒前
多多完成签到 ,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309