Combining Decision Making and Trajectory Planning for Lane Changing Using Deep Reinforcement Learning

超车 强化学习 弹道 计算机科学 集合(抽象数据类型) 背景(考古学) 运动规划 航程(航空) 人工智能 工程类 运输工程 机器人 生物 物理 航空航天工程 古生物学 程序设计语言 天文
作者
Shurong Li,Chong Wei,Ying Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 16110-16136 被引量:20
标识
DOI:10.1109/tits.2022.3148085
摘要

In the context of Automated Vehicles, the Automated Lane Change system, is fundamentally based upon the separate constructs of Perception, Decision making, Trajectory Planning, and Execution. However, in existing works there are many simplistic and unplausible assumptions in applying these constructs that severely restrict their operational effectiveness in realistic and complex driving scenarios. For instance, there are rigid assumptions about the disposition of vehicles and that lane-changing maneuvers can occur instantaneously, but that highly desirable features such as the ability for real-time trajectory re-planning are lacking. In this paper, we address these limitations through an integrated methodology for lane-change decision making and trajectory planning, in which a deep Reinforcement Learning algorithm with a safe action set technique is employed in decision making that is effectively coupled to a specially devised trajectory planning model. The proposed new methodology is computationally efficient, supporting real-time implementation, and provides for lane-changing maneuvers that can be made simultaneously with other vehicles and can be dynamically re-planned; thus, enabling flexible, robust, and safe lane-changing maneuvers under the guidance of a new decision-making module. Finally, the veracity of the proposed methodology in guiding a vehicle to improve travel times and accomplish high-level driving behaviors such as overtaking and desired-speed maintenance in a range of road traffic scenarios is demonstrated in a number of numerical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhen完成签到,获得积分10
1秒前
ladette发布了新的文献求助10
1秒前
yujie发布了新的文献求助10
1秒前
领导范儿应助Castiel采纳,获得10
2秒前
彼得大帝完成签到,获得积分10
2秒前
大模型应助qsq采纳,获得30
4秒前
wuta完成签到,获得积分10
5秒前
充电宝应助Reborn采纳,获得10
6秒前
李白白白完成签到,获得积分10
7秒前
清脆安南完成签到 ,获得积分10
7秒前
7秒前
情怀应助聪明可爱小绘理采纳,获得10
7秒前
听风说情话完成签到,获得积分10
10秒前
JJ发布了新的文献求助10
10秒前
11秒前
拉长的板凳完成签到,获得积分10
11秒前
山野桃饼完成签到,获得积分10
12秒前
山羊穿毛衣完成签到,获得积分0
12秒前
充电宝应助ladette采纳,获得10
13秒前
Isaacwg168完成签到,获得积分10
13秒前
安静的棉花糖完成签到 ,获得积分10
13秒前
卑牧发布了新的文献求助10
14秒前
14秒前
YY完成签到,获得积分10
14秒前
蛋蛋完成签到,获得积分10
15秒前
科研通AI2S应助拉长的板凳采纳,获得10
15秒前
15秒前
Reborn完成签到,获得积分10
16秒前
拾忆发布了新的文献求助10
16秒前
18秒前
yuancw完成签到 ,获得积分10
18秒前
Reborn发布了新的文献求助10
19秒前
睡不醒的喵完成签到,获得积分10
19秒前
诚心的初露完成签到,获得积分10
20秒前
JJ完成签到,获得积分10
21秒前
qsq发布了新的文献求助30
21秒前
张建华完成签到,获得积分10
22秒前
23秒前
23秒前
KissesU完成签到 ,获得积分10
24秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085527
求助须知:如何正确求助?哪些是违规求助? 2738431
关于积分的说明 7549700
捐赠科研通 2388188
什么是DOI,文献DOI怎么找? 1266339
科研通“疑难数据库(出版商)”最低求助积分说明 613430
版权声明 598591