Combining Decision Making and Trajectory Planning for Lane Changing Using Deep Reinforcement Learning

超车 强化学习 弹道 计算机科学 集合(抽象数据类型) 背景(考古学) 运动规划 航程(航空) 人工智能 工程类 运输工程 机器人 生物 物理 航空航天工程 古生物学 程序设计语言 天文
作者
Shurong Li,Chong Wei,Ying Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 16110-16136 被引量:20
标识
DOI:10.1109/tits.2022.3148085
摘要

In the context of Automated Vehicles, the Automated Lane Change system, is fundamentally based upon the separate constructs of Perception, Decision making, Trajectory Planning, and Execution. However, in existing works there are many simplistic and unplausible assumptions in applying these constructs that severely restrict their operational effectiveness in realistic and complex driving scenarios. For instance, there are rigid assumptions about the disposition of vehicles and that lane-changing maneuvers can occur instantaneously, but that highly desirable features such as the ability for real-time trajectory re-planning are lacking. In this paper, we address these limitations through an integrated methodology for lane-change decision making and trajectory planning, in which a deep Reinforcement Learning algorithm with a safe action set technique is employed in decision making that is effectively coupled to a specially devised trajectory planning model. The proposed new methodology is computationally efficient, supporting real-time implementation, and provides for lane-changing maneuvers that can be made simultaneously with other vehicles and can be dynamically re-planned; thus, enabling flexible, robust, and safe lane-changing maneuvers under the guidance of a new decision-making module. Finally, the veracity of the proposed methodology in guiding a vehicle to improve travel times and accomplish high-level driving behaviors such as overtaking and desired-speed maintenance in a range of road traffic scenarios is demonstrated in a number of numerical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYT完成签到,获得积分10
刚刚
1秒前
3秒前
3秒前
3秒前
4秒前
4秒前
魏伯安发布了新的文献求助10
4秒前
4秒前
zhouleiwang完成签到,获得积分10
5秒前
李爱国应助aiming采纳,获得10
6秒前
无奈傲菡完成签到,获得积分10
7秒前
TT发布了新的文献求助10
7秒前
啦啦啦发布了新的文献求助10
8秒前
sun发布了新的文献求助10
9秒前
荣荣完成签到,获得积分10
9秒前
10秒前
小安完成签到,获得积分10
11秒前
Spencer完成签到 ,获得积分10
11秒前
PengHu完成签到,获得积分10
12秒前
12秒前
14秒前
16秒前
16秒前
16秒前
ywang发布了新的文献求助10
17秒前
失眠虔纹完成签到,获得积分10
17秒前
斯文败类应助nextconnie采纳,获得10
17秒前
药学牛马发布了新的文献求助10
21秒前
21秒前
22秒前
25秒前
张无缺完成签到,获得积分10
28秒前
30秒前
CodeCraft应助MES采纳,获得10
31秒前
笨笨乘风完成签到,获得积分10
32秒前
田様应助axunQAQ采纳,获得10
34秒前
完美秋烟发布了新的文献求助10
34秒前
无花果应助糊涂的小伙采纳,获得10
34秒前
白betty完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849