Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images

肝细胞癌 医学 活检 肝细胞腺瘤 接收机工作特性 肝硬化 放射科 病理 人工智能 内科学 计算机科学
作者
Na Cheng,Yong Ren,Jing Zhou,Yiwang Zhang,Deyu Wang,Xiaofang Zhang,Bing Chen,Fang Liu,Jin Lv,Qinghua Cao,Sijin Chen,Hong Du,Dayang Hui,Zijin Weng,Qiong Liang,Bojin Su,Lu-Ying Tang,Lanqing Han,Jianning Chen,Chun‐Kui Shao
出处
期刊:Gastroenterology [Elsevier]
卷期号:162 (7): 1948-1961.e7 被引量:107
标识
DOI:10.1053/j.gastro.2022.02.025
摘要

Hepatocellular nodular lesions (HNLs) constitute a heterogeneous group of disorders. Differential diagnosis among these lesions, especially high-grade dysplastic nodules (HGDNs) and well-differentiated hepatocellular carcinoma (WD-HCC), can be challenging, let alone biopsy specimens. We aimed to develop a deep learning system to solve these puzzles, improving the histopathologic diagnosis of HNLs (WD-HCC, HGDN, low-grade DN, focal nodular hyperplasia, hepatocellular adenoma), and background tissues (nodular cirrhosis, normal liver tissue).The samples consisting of surgical and biopsy specimens were collected from 6 hospitals. Each specimen was reviewed by 2 to 3 subspecialists. Four deep neural networks (ResNet50, InceptionV3, Xception, and the Ensemble) were used. Their performances were evaluated by confusion matrix, receiver operating characteristic curve, classification map, and heat map. The predictive efficiency of the optimal model was further verified by comparing with that of 9 pathologists.We obtained 213,280 patches from 1115 whole-slide images of 738 patients. An optimal model was finally chosen based on F1 score and area under the curve value, named hepatocellular-nodular artificial intelligence model (HnAIM), with the overall 7-category area under the curve of 0.935 in the independent external validation cohort. For biopsy specimens, the agreement rate with subspecialists' majority opinion was higher for HnAIM than 9 pathologists on both patch level and whole-slide images level.We first developed a deep learning diagnostic model for HNLs, which performed well and contributed to enhancing the diagnosis rate of early HCC and risk stratification of patients with HNLs. Furthermore, HnAIM had significant advantages in patch-level recognition, with important diagnostic implications for fragmentary or scarce biopsy specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻的芷珊完成签到,获得积分10
1秒前
clio完成签到,获得积分10
1秒前
ri_290发布了新的文献求助10
2秒前
2秒前
所所应助耍酷问兰采纳,获得10
2秒前
scuter发布了新的文献求助10
2秒前
3秒前
渺渺发布了新的文献求助10
4秒前
jwjzsznb发布了新的文献求助50
4秒前
4秒前
阳光的衫发布了新的文献求助10
5秒前
爆爆发布了新的文献求助10
5秒前
stop here完成签到,获得积分10
5秒前
bkagyin应助scuter采纳,获得10
7秒前
思源应助Genius采纳,获得10
7秒前
啵啵龙完成签到,获得积分10
8秒前
9秒前
酷波er应助HUYAOWEI采纳,获得10
10秒前
乐乐应助HUYAOWEI采纳,获得10
10秒前
大个应助HUYAOWEI采纳,获得10
10秒前
科研通AI6应助HUYAOWEI采纳,获得10
10秒前
小二郎应助HUYAOWEI采纳,获得10
10秒前
深情安青应助HUYAOWEI采纳,获得10
10秒前
科研通AI2S应助HUYAOWEI采纳,获得10
10秒前
SciGPT应助HUYAOWEI采纳,获得10
10秒前
小蘑菇应助HUYAOWEI采纳,获得10
10秒前
wxyshare应助HUYAOWEI采纳,获得20
10秒前
zzzzzzzzzzzz完成签到,获得积分10
10秒前
爆爆完成签到,获得积分10
11秒前
11秒前
可爱藏今发布了新的文献求助10
11秒前
Sy发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
开朗楼房完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
zzxr完成签到,获得积分10
15秒前
濛嘻嘻发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497