Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images

肝细胞癌 医学 活检 肝细胞腺瘤 接收机工作特性 肝硬化 放射科 病理 人工智能 内科学 计算机科学
作者
Na Cheng,Yong Ren,Jing Zhou,Yiwang Zhang,Deyu Wang,Shouxin Zhang,Bing Chen,Fang Liu,Jin Lv,Qinghua Cao,Sijin Chen,Hong Du,Dayang Hui,Zijin Weng,Qiong Liang,Bojin Su,Lu-Ying Tang,Lanqing Han,Jianning Chen,Chun‐Kui Shao
出处
期刊:Gastroenterology [Elsevier]
卷期号:162 (7): 1948-1961.e7 被引量:56
标识
DOI:10.1053/j.gastro.2022.02.025
摘要

Hepatocellular nodular lesions (HNLs) constitute a heterogeneous group of disorders. Differential diagnosis among these lesions, especially high-grade dysplastic nodules (HGDNs) and well-differentiated hepatocellular carcinoma (WD-HCC), can be challenging, let alone biopsy specimens. We aimed to develop a deep learning system to solve these puzzles, improving the histopathologic diagnosis of HNLs (WD-HCC, HGDN, low-grade DN, focal nodular hyperplasia, hepatocellular adenoma), and background tissues (nodular cirrhosis, normal liver tissue).The samples consisting of surgical and biopsy specimens were collected from 6 hospitals. Each specimen was reviewed by 2 to 3 subspecialists. Four deep neural networks (ResNet50, InceptionV3, Xception, and the Ensemble) were used. Their performances were evaluated by confusion matrix, receiver operating characteristic curve, classification map, and heat map. The predictive efficiency of the optimal model was further verified by comparing with that of 9 pathologists.We obtained 213,280 patches from 1115 whole-slide images of 738 patients. An optimal model was finally chosen based on F1 score and area under the curve value, named hepatocellular-nodular artificial intelligence model (HnAIM), with the overall 7-category area under the curve of 0.935 in the independent external validation cohort. For biopsy specimens, the agreement rate with subspecialists' majority opinion was higher for HnAIM than 9 pathologists on both patch level and whole-slide images level.We first developed a deep learning diagnostic model for HNLs, which performed well and contributed to enhancing the diagnosis rate of early HCC and risk stratification of patients with HNLs. Furthermore, HnAIM had significant advantages in patch-level recognition, with important diagnostic implications for fragmentary or scarce biopsy specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荔枝完成签到 ,获得积分10
1秒前
赘婿应助秋意浓采纳,获得10
3秒前
蛋壳柯发布了新的文献求助10
3秒前
可爱的函函应助白华苍松采纳,获得10
4秒前
兽医12138完成签到 ,获得积分10
6秒前
6秒前
小申发布了新的文献求助10
9秒前
CL完成签到,获得积分10
10秒前
scinanpro完成签到 ,获得积分10
12秒前
制冷剂完成签到 ,获得积分10
12秒前
单纯访枫完成签到 ,获得积分10
13秒前
卓若之完成签到 ,获得积分10
14秒前
萧然完成签到,获得积分10
15秒前
蛋壳柯完成签到,获得积分10
16秒前
Getlogger完成签到,获得积分10
16秒前
李健应助科研通管家采纳,获得10
16秒前
Yziii应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得30
16秒前
16秒前
华仔应助下酒菜采纳,获得10
18秒前
李健的小迷弟应助小申采纳,获得10
19秒前
研友_ZzrWKZ完成签到 ,获得积分10
22秒前
zx完成签到 ,获得积分10
23秒前
24秒前
pym完成签到,获得积分10
25秒前
体贴的青烟完成签到,获得积分10
25秒前
27秒前
xiaohongmao完成签到,获得积分10
29秒前
29秒前
zh完成签到 ,获得积分10
32秒前
米九完成签到,获得积分10
33秒前
下酒菜发布了新的文献求助10
34秒前
V_I_G发布了新的文献求助10
35秒前
自信的寒天完成签到,获得积分10
36秒前
周涛完成签到,获得积分10
37秒前
自由老头完成签到,获得积分10
40秒前
41秒前
香山叶正红完成签到 ,获得积分10
42秒前
自由老头发布了新的文献求助10
42秒前
调调单单完成签到,获得积分10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784551
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011