Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images

肝细胞癌 医学 活检 肝细胞腺瘤 接收机工作特性 肝硬化 放射科 病理 人工智能 内科学 计算机科学
作者
Na Cheng,Yong Ren,Jing Zhou,Yiwang Zhang,Deyu Wang,Xiaofang Zhang,Bing Chen,Fang Liu,Jin Lv,Qinghua Cao,Sijin Chen,Hong Du,Dayang Hui,Zijin Weng,Qiong Liang,Bojin Su,Lu-Ying Tang,Lanqing Han,Jianning Chen,Chun‐Kui Shao
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:162 (7): 1948-1961.e7 被引量:66
标识
DOI:10.1053/j.gastro.2022.02.025
摘要

Hepatocellular nodular lesions (HNLs) constitute a heterogeneous group of disorders. Differential diagnosis among these lesions, especially high-grade dysplastic nodules (HGDNs) and well-differentiated hepatocellular carcinoma (WD-HCC), can be challenging, let alone biopsy specimens. We aimed to develop a deep learning system to solve these puzzles, improving the histopathologic diagnosis of HNLs (WD-HCC, HGDN, low-grade DN, focal nodular hyperplasia, hepatocellular adenoma), and background tissues (nodular cirrhosis, normal liver tissue).The samples consisting of surgical and biopsy specimens were collected from 6 hospitals. Each specimen was reviewed by 2 to 3 subspecialists. Four deep neural networks (ResNet50, InceptionV3, Xception, and the Ensemble) were used. Their performances were evaluated by confusion matrix, receiver operating characteristic curve, classification map, and heat map. The predictive efficiency of the optimal model was further verified by comparing with that of 9 pathologists.We obtained 213,280 patches from 1115 whole-slide images of 738 patients. An optimal model was finally chosen based on F1 score and area under the curve value, named hepatocellular-nodular artificial intelligence model (HnAIM), with the overall 7-category area under the curve of 0.935 in the independent external validation cohort. For biopsy specimens, the agreement rate with subspecialists' majority opinion was higher for HnAIM than 9 pathologists on both patch level and whole-slide images level.We first developed a deep learning diagnostic model for HNLs, which performed well and contributed to enhancing the diagnosis rate of early HCC and risk stratification of patients with HNLs. Furthermore, HnAIM had significant advantages in patch-level recognition, with important diagnostic implications for fragmentary or scarce biopsy specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
在水一方应助壮观以松采纳,获得10
3秒前
4秒前
4秒前
烟花应助肖志勇采纳,获得10
5秒前
111111111发布了新的文献求助10
5秒前
动漫大师发布了新的文献求助10
5秒前
。。。完成签到,获得积分10
6秒前
6秒前
动漫大师发布了新的文献求助10
7秒前
8秒前
蒋蒋发布了新的文献求助10
9秒前
9秒前
味子橘发布了新的文献求助10
10秒前
pl脆脆发布了新的文献求助10
10秒前
李大柱发布了新的文献求助10
11秒前
科研民工发布了新的文献求助10
11秒前
soapffz完成签到,获得积分10
11秒前
跳跃鱼发布了新的文献求助10
11秒前
12秒前
所所应助科研大角牛采纳,获得10
13秒前
14秒前
乐乐应助李大柱采纳,获得10
15秒前
15秒前
鱼蛋丸子完成签到,获得积分10
15秒前
16秒前
壮观以松发布了新的文献求助10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得30
16秒前
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得30
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
lbyscu完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
连续体和结构的非线性有限元 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3693864
求助须知:如何正确求助?哪些是违规求助? 3244647
关于积分的说明 9846877
捐赠科研通 2956449
什么是DOI,文献DOI怎么找? 1621034
邀请新用户注册赠送积分活动 766837
科研通“疑难数据库(出版商)”最低求助积分说明 740632