Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images

肝细胞癌 医学 活检 肝细胞腺瘤 接收机工作特性 肝硬化 放射科 病理 人工智能 内科学 计算机科学
作者
Na Cheng,Yong Ren,Jing Zhou,Yiwang Zhang,Deyu Wang,Xiaofang Zhang,Bing Chen,Fang Liu,Jin Lv,Qinghua Cao,Sijin Chen,Hong Du,Dayang Hui,Zijin Weng,Qiong Liang,Bojin Su,Lu-Ying Tang,Lanqing Han,Jianning Chen,Chun‐Kui Shao
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:162 (7): 1948-1961.e7 被引量:76
标识
DOI:10.1053/j.gastro.2022.02.025
摘要

Hepatocellular nodular lesions (HNLs) constitute a heterogeneous group of disorders. Differential diagnosis among these lesions, especially high-grade dysplastic nodules (HGDNs) and well-differentiated hepatocellular carcinoma (WD-HCC), can be challenging, let alone biopsy specimens. We aimed to develop a deep learning system to solve these puzzles, improving the histopathologic diagnosis of HNLs (WD-HCC, HGDN, low-grade DN, focal nodular hyperplasia, hepatocellular adenoma), and background tissues (nodular cirrhosis, normal liver tissue).The samples consisting of surgical and biopsy specimens were collected from 6 hospitals. Each specimen was reviewed by 2 to 3 subspecialists. Four deep neural networks (ResNet50, InceptionV3, Xception, and the Ensemble) were used. Their performances were evaluated by confusion matrix, receiver operating characteristic curve, classification map, and heat map. The predictive efficiency of the optimal model was further verified by comparing with that of 9 pathologists.We obtained 213,280 patches from 1115 whole-slide images of 738 patients. An optimal model was finally chosen based on F1 score and area under the curve value, named hepatocellular-nodular artificial intelligence model (HnAIM), with the overall 7-category area under the curve of 0.935 in the independent external validation cohort. For biopsy specimens, the agreement rate with subspecialists' majority opinion was higher for HnAIM than 9 pathologists on both patch level and whole-slide images level.We first developed a deep learning diagnostic model for HNLs, which performed well and contributed to enhancing the diagnosis rate of early HCC and risk stratification of patients with HNLs. Furthermore, HnAIM had significant advantages in patch-level recognition, with important diagnostic implications for fragmentary or scarce biopsy specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨ko完成签到 ,获得积分10
2秒前
布蓝图完成签到 ,获得积分10
6秒前
cis2014发布了新的文献求助10
6秒前
HLT完成签到 ,获得积分10
13秒前
厘米完成签到 ,获得积分10
16秒前
朴实初夏完成签到 ,获得积分10
26秒前
lilylwy完成签到 ,获得积分0
31秒前
量子星尘发布了新的文献求助10
32秒前
peiter发布了新的文献求助10
33秒前
春天的粥完成签到 ,获得积分10
44秒前
怡然小蚂蚁完成签到 ,获得积分10
45秒前
石石刘完成签到 ,获得积分10
50秒前
CXS完成签到,获得积分10
51秒前
eternal_dreams完成签到 ,获得积分10
52秒前
nuliguan完成签到 ,获得积分10
55秒前
小北完成签到 ,获得积分10
56秒前
科目三应助猪猪hero采纳,获得10
1分钟前
Jeffery426发布了新的文献求助10
1分钟前
时代更迭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
luoyukejing完成签到,获得积分10
1分钟前
幽默艳发布了新的文献求助10
1分钟前
罗添龙发布了新的文献求助10
1分钟前
W~舞发布了新的文献求助10
1分钟前
唯梦完成签到 ,获得积分10
1分钟前
优雅莞完成签到,获得积分10
1分钟前
SciGPT应助ly采纳,获得10
1分钟前
我是老大应助罗添龙采纳,获得10
1分钟前
harry2021完成签到,获得积分10
1分钟前
天水张家辉完成签到,获得积分10
1分钟前
1分钟前
烟火会翻滚完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ly发布了新的文献求助10
1分钟前
dldldl完成签到,获得积分10
2分钟前
adazbq完成签到 ,获得积分0
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218