Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

自回归积分移动平均 计算机科学 股票市场 波动性(金融) 卷积神经网络 库存(枪支) 人工智能 循环神经网络 深度学习 人工神经网络 时间序列 机器学习 计量经济学 经济 机械工程 古生物学 工程类 生物
作者
Zhuangwei Shi,Hu Yang,Guangliang Mo,Jian Wu
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2204.02623
摘要

Stock market plays an important role in the economic development. Due to the complex volatility of the stock market, the research and prediction on the change of the stock price, can avoid the risk for the investors. The traditional time series model ARIMA can not describe the nonlinearity, and can not achieve satisfactory results in the stock prediction. As neural networks are with strong nonlinear generalization ability, this paper proposes an attention-based CNN-LSTM and XGBoost hybrid model to predict the stock price. The model constructed in this paper integrates the time series model, the Convolutional Neural Networks with Attention mechanism, the Long Short-Term Memory network, and XGBoost regressor in a non-linear relationship, and improves the prediction accuracy. The model can fully mine the historical information of the stock market in multiple periods. The stock data is first preprocessed through ARIMA. Then, the deep learning architecture formed in pretraining-finetuning framework is adopted. The pre-training model is the Attention-based CNN-LSTM model based on sequence-to-sequence framework. The model first uses convolution to extract the deep features of the original stock data, and then uses the Long Short-Term Memory networks to mine the long-term time series features. Finally, the XGBoost model is adopted for fine-tuning. The results show that the hybrid model is more effective and the prediction accuracy is relatively high, which can help investors or institutions to make decisions and achieve the purpose of expanding return and avoiding risk. Source code is available at https://github.com/zshicode/Attention-CLX-stock-prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
柳叶刀完成签到,获得积分20
2秒前
鱼笙发布了新的文献求助10
2秒前
4秒前
pinging发布了新的文献求助10
4秒前
pluto应助Miecz采纳,获得10
4秒前
5秒前
ohh驳回了Ava应助
5秒前
6秒前
KrisTina完成签到 ,获得积分10
8秒前
一禾完成签到,获得积分10
8秒前
李白白白发布了新的文献求助10
9秒前
cjw发布了新的文献求助10
9秒前
9秒前
momo应助pinging采纳,获得10
10秒前
liszari完成签到,获得积分10
10秒前
JamesPei应助望阳天采纳,获得10
11秒前
zly完成签到,获得积分10
12秒前
Orange应助ark861023采纳,获得10
12秒前
一禾发布了新的文献求助10
13秒前
微笑的觅夏完成签到,获得积分10
13秒前
lingyan发布了新的文献求助10
14秒前
dada发布了新的文献求助10
14秒前
Hannah应助李白白白采纳,获得10
14秒前
寻道图强应助鱼笙采纳,获得30
15秒前
思源应助yuqinghui98采纳,获得10
17秒前
cjw完成签到,获得积分10
18秒前
Owen应助鲁肃采纳,获得10
18秒前
18秒前
KONG完成签到,获得积分20
19秒前
美味的薯片完成签到,获得积分10
20秒前
ouwen发布了新的文献求助10
22秒前
十一完成签到 ,获得积分10
22秒前
舒心的期待完成签到,获得积分10
22秒前
23秒前
23秒前
24秒前
24秒前
25秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083756
求助须知:如何正确求助?哪些是违规求助? 2737102
关于积分的说明 7543295
捐赠科研通 2386458
什么是DOI,文献DOI怎么找? 1265484
科研通“疑难数据库(出版商)”最低求助积分说明 613100
版权声明 597951