亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

自回归积分移动平均 计算机科学 股票市场 波动性(金融) 卷积神经网络 库存(枪支) 人工智能 循环神经网络 深度学习 人工神经网络 时间序列 机器学习 计量经济学 经济 机械工程 古生物学 工程类 生物
作者
Zhuangwei Shi,Hu Yang,Guangliang Mo,Jian Wu
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2204.02623
摘要

Stock market plays an important role in the economic development. Due to the complex volatility of the stock market, the research and prediction on the change of the stock price, can avoid the risk for the investors. The traditional time series model ARIMA can not describe the nonlinearity, and can not achieve satisfactory results in the stock prediction. As neural networks are with strong nonlinear generalization ability, this paper proposes an attention-based CNN-LSTM and XGBoost hybrid model to predict the stock price. The model constructed in this paper integrates the time series model, the Convolutional Neural Networks with Attention mechanism, the Long Short-Term Memory network, and XGBoost regressor in a non-linear relationship, and improves the prediction accuracy. The model can fully mine the historical information of the stock market in multiple periods. The stock data is first preprocessed through ARIMA. Then, the deep learning architecture formed in pretraining-finetuning framework is adopted. The pre-training model is the Attention-based CNN-LSTM model based on sequence-to-sequence framework. The model first uses convolution to extract the deep features of the original stock data, and then uses the Long Short-Term Memory networks to mine the long-term time series features. Finally, the XGBoost model is adopted for fine-tuning. The results show that the hybrid model is more effective and the prediction accuracy is relatively high, which can help investors or institutions to make decisions and achieve the purpose of expanding return and avoiding risk. Source code is available at https://github.com/zshicode/Attention-CLX-stock-prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助wgxwgx采纳,获得10
8秒前
17秒前
wgxwgx发布了新的文献求助10
21秒前
wgxwgx完成签到,获得积分10
31秒前
9527应助科研通管家采纳,获得10
35秒前
40秒前
石石夏发布了新的文献求助10
44秒前
磐石完成签到,获得积分10
49秒前
充电宝应助蒂芬妮采纳,获得10
1分钟前
1分钟前
2分钟前
醉熏的幼珊完成签到,获得积分10
2分钟前
Shicheng完成签到,获得积分10
2分钟前
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
9527应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得30
2分钟前
2分钟前
予秋发布了新的文献求助10
2分钟前
十分十分佳完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
天天快乐应助要减肥中蓝采纳,获得10
3分钟前
淡然绝山发布了新的文献求助10
3分钟前
sho完成签到,获得积分10
3分钟前
淡然绝山完成签到,获得积分10
3分钟前
丘比特应助ukz37752采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Jasper应助归海浩阑采纳,获得10
4分钟前
Gryff完成签到 ,获得积分10
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
归海浩阑完成签到,获得积分10
5分钟前
完美世界应助wuuw采纳,获得30
5分钟前
5分钟前
5分钟前
wuuw发布了新的文献求助30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065350
求助须知:如何正确求助?哪些是违规求助? 4287952
关于积分的说明 13359526
捐赠科研通 4106731
什么是DOI,文献DOI怎么找? 2248808
邀请新用户注册赠送积分活动 1254327
关于科研通互助平台的介绍 1185998