Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study

糖尿病性视网膜病变 医学 眼底(子宫) 前瞻性队列研究 介绍 视网膜病变 验光服务 糖尿病 队列 眼科 家庭医学 儿科 外科 内科学 内分泌学
作者
Paisan Ruamviboonsuk,Richa Tiwari,Rory Sayres,Variya Nganthavee,Kornwipa Hemarat,Apinpat Kongprayoon,Rajiv Raman,Brian Levinstein,Yun Liu,Mike Schaekermann,Roy Lee,Sunny Virmani,Kasumi Widner,John C. Chambers,Fred Hersch,Lily Peng,Dale R. Webster
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (4): e235-e244 被引量:85
标识
DOI:10.1016/s2589-7500(22)00017-6
摘要

Diabetic retinopathy is a leading cause of preventable blindness, especially in low-income and middle-income countries (LMICs). Deep-learning systems have the potential to enhance diabetic retinopathy screenings in these settings, yet prospective studies assessing their usability and performance are scarce.We did a prospective interventional cohort study to evaluate the real-world performance and feasibility of deploying a deep-learning system into the health-care system of Thailand. Patients with diabetes and listed on the national diabetes registry, aged 18 years or older, able to have their fundus photograph taken for at least one eye, and due for screening as per the Thai Ministry of Public Health guidelines were eligible for inclusion. Eligible patients were screened with the deep-learning system at nine primary care sites under Thailand's national diabetic retinopathy screening programme. Patients with a previous diagnosis of diabetic macular oedema, severe non-proliferative diabetic retinopathy, or proliferative diabetic retinopathy; previous laser treatment of the retina or retinal surgery; other non-diabetic retinopathy eye disease requiring referral to an ophthalmologist; or inability to have fundus photograph taken of both eyes for any reason were excluded. Deep-learning system-based interpretations of patient fundus images and referral recommendations were provided in real time. As a safety mechanism, regional retina specialists over-read each image. Performance of the deep-learning system (accuracy, sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) were measured against an adjudicated reference standard, provided by fellowship-trained retina specialists. This study is registered with the Thai national clinical trials registry, TCRT20190902002.Between Dec 12, 2018, and March 29, 2020, 7940 patients were screened for inclusion. 7651 (96·3%) patients were eligible for study analysis, and 2412 (31·5%) patients were referred for diabetic retinopathy, diabetic macular oedema, ungradable images, or low visual acuity. For vision-threatening diabetic retinopathy, the deep-learning system had an accuracy of 94·7% (95% CI 93·0-96·2), sensitivity of 91·4% (87·1-95·0), and specificity of 95·4% (94·1-96·7). The retina specialist over-readers had an accuracy of 93·5 (91·7-95·0; p=0·17), a sensitivity of 84·8% (79·4-90·0; p=0·024), and specificity of 95·5% (94·1-96·7; p=0·98). The PPV for the deep-learning system was 79·2 (95% CI 73·8-84·3) compared with 75·6 (69·8-81·1) for the over-readers. The NPV for the deep-learning system was 95·5 (92·8-97·9) compared with 92·4 (89·3-95·5) for the over-readers.A deep-learning system can deliver real-time diabetic retinopathy detection capability similar to retina specialists in community-based screening settings. Socioenvironmental factors and workflows must be taken into consideration when implementing a deep-learning system within a large-scale screening programme in LMICs.Google and Rajavithi Hospital, Bangkok, Thailand.For the Thai translation of the abstract see Supplementary Materials section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青衣完成签到,获得积分10
1秒前
zzzzzz发布了新的文献求助30
1秒前
lmz完成签到,获得积分10
2秒前
666发布了新的文献求助10
2秒前
坚强映菱完成签到,获得积分10
3秒前
乐乐应助纯真毛豆采纳,获得10
4秒前
给我点光环完成签到,获得积分10
4秒前
4秒前
pluto应助Le~le采纳,获得10
5秒前
共享精神应助lightman采纳,获得10
8秒前
超级玛丽完成签到 ,获得积分10
9秒前
sam完成签到,获得积分10
10秒前
暴躁小兔发布了新的文献求助10
12秒前
传奇3应助蝶步韶华采纳,获得10
13秒前
xw发布了新的文献求助10
13秒前
次一口8完成签到,获得积分10
13秒前
KK完成签到,获得积分10
13秒前
光储一体化完成签到,获得积分10
14秒前
我是快乐的小行家完成签到,获得积分10
15秒前
Lucas应助KK采纳,获得10
17秒前
19秒前
tao完成签到 ,获得积分10
21秒前
22秒前
csy发布了新的文献求助10
22秒前
JUYIN完成签到,获得积分10
22秒前
解洙完成签到 ,获得积分10
22秒前
pluto应助Flori采纳,获得50
22秒前
22秒前
23秒前
小猪佩奇用ak完成签到,获得积分10
24秒前
Bao完成签到 ,获得积分10
24秒前
24秒前
lightman发布了新的文献求助10
25秒前
pluto应助winnie采纳,获得10
27秒前
领导范儿应助xinyuxxx采纳,获得10
28秒前
东华发布了新的文献求助30
28秒前
高翔发布了新的文献求助10
28秒前
tanglu发布了新的文献求助10
28秒前
xw完成签到,获得积分10
29秒前
666发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264