Significance In the microbial world, it is common for previously isolated communities to come in contact with one another. This phenomenon is known as community coalescence. Despite it being a key process in the assembly of microbial communities, little is known about the mechanisms that determine its outcomes. Here we present an experimental system that allowed us to study over 100 coalescence events between previously segregated microbiomes. Our results, predicted by a mathematical model, provide direct evidence of ecological coselection: the situation where members of a community recruit one another during coalescence. Our combined experimental and theoretical framework represents a powerful tool to predict the outcomes and interrogate the mechanisms of community coalescence.