已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Leukocytes Image Classification Using Optimized Convolutional Neural Networks

卷积神经网络 计算机科学 人工智能 图像(数学) 模式识别(心理学) 上下文图像分类 人工神经网络 机器学习
作者
Maryam Hosseini,Dana Bani-Hani,Sarah S. Lam
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117672-117672 被引量:20
标识
DOI:10.1016/j.eswa.2022.117672
摘要

• Developed a fast and accurate hybrid approach for leukocyte classification. • Achieved fast convergence of hyperparameters with a random search approach. • Demonstrated superior performance of an optimized convolutional neural network. Hematologic diseases and blood disorders can be studied through the microscopic or chemical examination of blood smear images. Many researchers work on identifying, counting, and classifying different types of blood cells as a theoretical and practical problem that is crucial for disease diagnosis and treatment planning. There are various approaches to classify blood cells such as thresholding, morphological operators, segmentation, edge-based techniques, region-based techniques, and hybrid approaches. Each of these techniques has several limitations in effectively classifying different types of cells; however, methods based on deep learning (DL) have remarkably contributed to the progress of blood cell classification by combining feature extraction, feature selection, and classification into one interconnected step. This study develops a hybrid approach of DL and optimization for accurate and efficient classification of four types of leukocytes: neutrophils, eosinophils, lymphocytes, and monocytes. Model hyperparameters are optimized using grid search (GS) and random search (RS), in which a convolutional neural network (CNN) is used to classify leukocytes. CNNs work through pattern recognition to detect significant features that help distinguish different classes. The blood cell count and detection (BCCD) dataset provides basic information, but the data is insufficient and highly unbalanced for CNNs to accurately classify the images, so the data is augmented to improve model performance. This segmentation-free optimized CNN achieved a classification accuracy of 97% for the validation set, which includes 2,487 cell images, and 99% for the training set, which includes 9,966 cell images. The model reached a sensitivity and specificity of 94% and 98%, respectively. RS accelerates the process of hyperparameter optimization while achieving the same accuracy as GS. The results are compared with the results accomplished by recent CNN models on the BCCD database using seven performance measures and demonstrate the superior performance and competence of the proposed method. This research study develops a fast and accurate approach for leukocyte classification and can be beneficial for other image classification tasks and help clinicians in diagnosing blood diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
觅荷完成签到,获得积分10
刚刚
Ming完成签到 ,获得积分10
1秒前
拉长的手机完成签到 ,获得积分10
1秒前
1秒前
唐唐完成签到 ,获得积分10
2秒前
科研fw完成签到 ,获得积分10
2秒前
沉心静气搞学习应助Zoo采纳,获得70
2秒前
3秒前
vayne发布了新的文献求助10
4秒前
Universe完成签到,获得积分10
4秒前
KY发布了新的文献求助10
5秒前
三个气的大门完成签到 ,获得积分10
6秒前
6秒前
健壮的悟空完成签到 ,获得积分20
7秒前
王木木完成签到 ,获得积分10
8秒前
DrLin完成签到 ,获得积分10
8秒前
俊俊完成签到,获得积分10
8秒前
Universe发布了新的文献求助10
9秒前
Hatelunwen完成签到,获得积分10
9秒前
悄悄完成签到 ,获得积分10
10秒前
直率的以寒完成签到 ,获得积分10
10秒前
倒头睡不醒完成签到,获得积分10
10秒前
llk完成签到 ,获得积分10
12秒前
12秒前
羽羽完成签到 ,获得积分10
12秒前
JD完成签到,获得积分20
13秒前
张秉环完成签到 ,获得积分10
13秒前
新宇发布了新的文献求助30
14秒前
沉默问夏完成签到 ,获得积分10
14秒前
simon完成签到 ,获得积分10
14秒前
官官完成签到 ,获得积分10
15秒前
铭铭完成签到 ,获得积分10
15秒前
Zeno完成签到 ,获得积分10
15秒前
克泷完成签到 ,获得积分10
16秒前
线条完成签到 ,获得积分10
16秒前
17秒前
JD发布了新的文献求助10
17秒前
幸运幸福完成签到,获得积分10
17秒前
kai chen完成签到 ,获得积分0
18秒前
清秀的仙人掌完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493

今日热心研友

沉心静气搞学习
70
差不多先生
2 20
豆子
20
ZJX
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10