Leukocytes Image Classification Using Optimized Convolutional Neural Networks

卷积神经网络 计算机科学 人工智能 图像(数学) 模式识别(心理学) 上下文图像分类 人工神经网络 机器学习
作者
Maryam Hosseini,Dana Bani-Hani,Sarah S. Lam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117672-117672 被引量:20
标识
DOI:10.1016/j.eswa.2022.117672
摘要

• Developed a fast and accurate hybrid approach for leukocyte classification. • Achieved fast convergence of hyperparameters with a random search approach. • Demonstrated superior performance of an optimized convolutional neural network. Hematologic diseases and blood disorders can be studied through the microscopic or chemical examination of blood smear images. Many researchers work on identifying, counting, and classifying different types of blood cells as a theoretical and practical problem that is crucial for disease diagnosis and treatment planning. There are various approaches to classify blood cells such as thresholding, morphological operators, segmentation, edge-based techniques, region-based techniques, and hybrid approaches. Each of these techniques has several limitations in effectively classifying different types of cells; however, methods based on deep learning (DL) have remarkably contributed to the progress of blood cell classification by combining feature extraction, feature selection, and classification into one interconnected step. This study develops a hybrid approach of DL and optimization for accurate and efficient classification of four types of leukocytes: neutrophils, eosinophils, lymphocytes, and monocytes. Model hyperparameters are optimized using grid search (GS) and random search (RS), in which a convolutional neural network (CNN) is used to classify leukocytes. CNNs work through pattern recognition to detect significant features that help distinguish different classes. The blood cell count and detection (BCCD) dataset provides basic information, but the data is insufficient and highly unbalanced for CNNs to accurately classify the images, so the data is augmented to improve model performance. This segmentation-free optimized CNN achieved a classification accuracy of 97% for the validation set, which includes 2,487 cell images, and 99% for the training set, which includes 9,966 cell images. The model reached a sensitivity and specificity of 94% and 98%, respectively. RS accelerates the process of hyperparameter optimization while achieving the same accuracy as GS. The results are compared with the results accomplished by recent CNN models on the BCCD database using seven performance measures and demonstrate the superior performance and competence of the proposed method. This research study develops a fast and accurate approach for leukocyte classification and can be beneficial for other image classification tasks and help clinicians in diagnosing blood diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzz发布了新的文献求助10
刚刚
kingwill应助江南烟雨如笙采纳,获得20
1秒前
1秒前
zrk发布了新的文献求助10
1秒前
小毕可乐完成签到,获得积分10
2秒前
zc19891130完成签到,获得积分10
2秒前
烟花应助晗仔采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
小蘑菇应助zhui采纳,获得10
4秒前
4秒前
虚心的冷雪完成签到,获得积分20
5秒前
科研小白发布了新的文献求助10
5秒前
苹果萧发布了新的文献求助10
6秒前
zhihan发布了新的文献求助10
7秒前
Hao发布了新的文献求助10
7秒前
7秒前
Orange应助贾不可采纳,获得10
7秒前
李健的小迷弟应助贾不可采纳,获得10
7秒前
FashionBoy应助贾不可采纳,获得10
7秒前
奋斗的夜山完成签到 ,获得积分10
7秒前
yana发布了新的文献求助20
7秒前
yijiubingshi完成签到,获得积分10
8秒前
苏南完成签到 ,获得积分10
8秒前
冰激凌UP发布了新的文献求助10
8秒前
SCI发布了新的文献求助10
8秒前
CD发布了新的文献求助10
8秒前
9秒前
yan123发布了新的文献求助10
10秒前
10秒前
充电宝应助yyj采纳,获得10
10秒前
马静雨发布了新的文献求助10
10秒前
云游归尘发布了新的文献求助10
11秒前
12秒前
111发布了新的文献求助10
12秒前
寰宇完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794