Leukocytes Image Classification Using Optimized Convolutional Neural Networks

卷积神经网络 计算机科学 人工智能 图像(数学) 模式识别(心理学) 上下文图像分类 人工神经网络 机器学习
作者
Maryam Hosseini,Dana Bani-Hani,Sarah S. Lam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117672-117672 被引量:20
标识
DOI:10.1016/j.eswa.2022.117672
摘要

• Developed a fast and accurate hybrid approach for leukocyte classification. • Achieved fast convergence of hyperparameters with a random search approach. • Demonstrated superior performance of an optimized convolutional neural network. Hematologic diseases and blood disorders can be studied through the microscopic or chemical examination of blood smear images. Many researchers work on identifying, counting, and classifying different types of blood cells as a theoretical and practical problem that is crucial for disease diagnosis and treatment planning. There are various approaches to classify blood cells such as thresholding, morphological operators, segmentation, edge-based techniques, region-based techniques, and hybrid approaches. Each of these techniques has several limitations in effectively classifying different types of cells; however, methods based on deep learning (DL) have remarkably contributed to the progress of blood cell classification by combining feature extraction, feature selection, and classification into one interconnected step. This study develops a hybrid approach of DL and optimization for accurate and efficient classification of four types of leukocytes: neutrophils, eosinophils, lymphocytes, and monocytes. Model hyperparameters are optimized using grid search (GS) and random search (RS), in which a convolutional neural network (CNN) is used to classify leukocytes. CNNs work through pattern recognition to detect significant features that help distinguish different classes. The blood cell count and detection (BCCD) dataset provides basic information, but the data is insufficient and highly unbalanced for CNNs to accurately classify the images, so the data is augmented to improve model performance. This segmentation-free optimized CNN achieved a classification accuracy of 97% for the validation set, which includes 2,487 cell images, and 99% for the training set, which includes 9,966 cell images. The model reached a sensitivity and specificity of 94% and 98%, respectively. RS accelerates the process of hyperparameter optimization while achieving the same accuracy as GS. The results are compared with the results accomplished by recent CNN models on the BCCD database using seven performance measures and demonstrate the superior performance and competence of the proposed method. This research study develops a fast and accurate approach for leukocyte classification and can be beneficial for other image classification tasks and help clinicians in diagnosing blood diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
高贵觅风发布了新的文献求助30
3秒前
3秒前
水果完成签到,获得积分10
4秒前
化学小学生给化学小学生的求助进行了留言
4秒前
郁金香发布了新的文献求助10
5秒前
小如要努力完成签到,获得积分10
6秒前
汪宇发布了新的文献求助10
6秒前
CipherSage应助畅快的冷安采纳,获得10
6秒前
7秒前
小古完成签到,获得积分10
7秒前
dlwlrma发布了新的文献求助10
8秒前
Renaissance完成签到 ,获得积分10
8秒前
8秒前
辣椒完成签到 ,获得积分10
8秒前
无心的小霸王完成签到 ,获得积分10
8秒前
yjy123发布了新的文献求助10
9秒前
MrWang完成签到,获得积分10
10秒前
chenzhi发布了新的文献求助10
11秒前
BowieHuang应助LONGzhi采纳,获得10
12秒前
12秒前
赵一完成签到,获得积分10
12秒前
科研通AI6.1应助通~采纳,获得10
12秒前
赘婿应助XylonYu采纳,获得10
13秒前
14秒前
天天快乐应助Mcarry采纳,获得10
16秒前
齐小齐完成签到,获得积分10
16秒前
糖醋里脊加醋完成签到,获得积分10
16秒前
懦弱的易绿完成签到,获得积分10
17秒前
烟花应助chenzhi采纳,获得10
17秒前
xuan给xuan的求助进行了留言
17秒前
kdfdds发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
Owen应助陈龙采纳,获得10
21秒前
21秒前
22秒前
Owen应助优秀采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722