Leukocytes Image Classification Using Optimized Convolutional Neural Networks

卷积神经网络 计算机科学 人工智能 图像(数学) 模式识别(心理学) 上下文图像分类 人工神经网络 机器学习
作者
Maryam Hosseini,Dana Bani-Hani,Sarah S. Lam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117672-117672 被引量:20
标识
DOI:10.1016/j.eswa.2022.117672
摘要

• Developed a fast and accurate hybrid approach for leukocyte classification. • Achieved fast convergence of hyperparameters with a random search approach. • Demonstrated superior performance of an optimized convolutional neural network. Hematologic diseases and blood disorders can be studied through the microscopic or chemical examination of blood smear images. Many researchers work on identifying, counting, and classifying different types of blood cells as a theoretical and practical problem that is crucial for disease diagnosis and treatment planning. There are various approaches to classify blood cells such as thresholding, morphological operators, segmentation, edge-based techniques, region-based techniques, and hybrid approaches. Each of these techniques has several limitations in effectively classifying different types of cells; however, methods based on deep learning (DL) have remarkably contributed to the progress of blood cell classification by combining feature extraction, feature selection, and classification into one interconnected step. This study develops a hybrid approach of DL and optimization for accurate and efficient classification of four types of leukocytes: neutrophils, eosinophils, lymphocytes, and monocytes. Model hyperparameters are optimized using grid search (GS) and random search (RS), in which a convolutional neural network (CNN) is used to classify leukocytes. CNNs work through pattern recognition to detect significant features that help distinguish different classes. The blood cell count and detection (BCCD) dataset provides basic information, but the data is insufficient and highly unbalanced for CNNs to accurately classify the images, so the data is augmented to improve model performance. This segmentation-free optimized CNN achieved a classification accuracy of 97% for the validation set, which includes 2,487 cell images, and 99% for the training set, which includes 9,966 cell images. The model reached a sensitivity and specificity of 94% and 98%, respectively. RS accelerates the process of hyperparameter optimization while achieving the same accuracy as GS. The results are compared with the results accomplished by recent CNN models on the BCCD database using seven performance measures and demonstrate the superior performance and competence of the proposed method. This research study develops a fast and accurate approach for leukocyte classification and can be beneficial for other image classification tasks and help clinicians in diagnosing blood diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui发布了新的文献求助10
1秒前
1秒前
yangjinru完成签到 ,获得积分10
1秒前
1秒前
2秒前
奥福发布了新的文献求助10
3秒前
3秒前
victor完成签到,获得积分10
6秒前
尘扬发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
迷路雨寒应助111采纳,获得20
7秒前
健壮熊猫发布了新的文献求助10
8秒前
mm发布了新的文献求助10
8秒前
psycho完成签到,获得积分10
8秒前
可爱的函函应助悲伤牛蛙采纳,获得10
8秒前
Orange应助hui采纳,获得10
8秒前
sakiecon完成签到,获得积分10
9秒前
yu风应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得30
9秒前
共享精神应助科研通管家采纳,获得30
9秒前
9秒前
xlx应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
xlx应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
yznfly给123的求助进行了留言
16秒前
shl完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851