Leukocytes Image Classification Using Optimized Convolutional Neural Networks

卷积神经网络 计算机科学 人工智能 图像(数学) 模式识别(心理学) 上下文图像分类 人工神经网络 机器学习
作者
Maryam Hosseini,Dana Bani-Hani,Sarah S. Lam
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117672-117672 被引量:20
标识
DOI:10.1016/j.eswa.2022.117672
摘要

• Developed a fast and accurate hybrid approach for leukocyte classification. • Achieved fast convergence of hyperparameters with a random search approach. • Demonstrated superior performance of an optimized convolutional neural network. Hematologic diseases and blood disorders can be studied through the microscopic or chemical examination of blood smear images. Many researchers work on identifying, counting, and classifying different types of blood cells as a theoretical and practical problem that is crucial for disease diagnosis and treatment planning. There are various approaches to classify blood cells such as thresholding, morphological operators, segmentation, edge-based techniques, region-based techniques, and hybrid approaches. Each of these techniques has several limitations in effectively classifying different types of cells; however, methods based on deep learning (DL) have remarkably contributed to the progress of blood cell classification by combining feature extraction, feature selection, and classification into one interconnected step. This study develops a hybrid approach of DL and optimization for accurate and efficient classification of four types of leukocytes: neutrophils, eosinophils, lymphocytes, and monocytes. Model hyperparameters are optimized using grid search (GS) and random search (RS), in which a convolutional neural network (CNN) is used to classify leukocytes. CNNs work through pattern recognition to detect significant features that help distinguish different classes. The blood cell count and detection (BCCD) dataset provides basic information, but the data is insufficient and highly unbalanced for CNNs to accurately classify the images, so the data is augmented to improve model performance. This segmentation-free optimized CNN achieved a classification accuracy of 97% for the validation set, which includes 2,487 cell images, and 99% for the training set, which includes 9,966 cell images. The model reached a sensitivity and specificity of 94% and 98%, respectively. RS accelerates the process of hyperparameter optimization while achieving the same accuracy as GS. The results are compared with the results accomplished by recent CNN models on the BCCD database using seven performance measures and demonstrate the superior performance and competence of the proposed method. This research study develops a fast and accurate approach for leukocyte classification and can be beneficial for other image classification tasks and help clinicians in diagnosing blood diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李柯莹发布了新的文献求助10
刚刚
1秒前
1秒前
yznfly给zyr的求助进行了留言
2秒前
酷波er应助momo采纳,获得10
2秒前
君君发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
静翕完成签到 ,获得积分10
3秒前
4秒前
yinjq777完成签到,获得积分10
5秒前
5秒前
鄂惜霜发布了新的文献求助10
5秒前
高高芷完成签到 ,获得积分10
5秒前
5秒前
liuyue完成签到,获得积分10
5秒前
JamesPei应助图图采纳,获得10
6秒前
6秒前
华仔应助LILI采纳,获得30
6秒前
7秒前
for_abSCI完成签到,获得积分10
7秒前
珊珊发布了新的文献求助10
7秒前
7秒前
7秒前
CG发布了新的文献求助10
7秒前
柴六斤发布了新的文献求助10
8秒前
balabala发布了新的文献求助10
9秒前
科研通AI5应助番西茄采纳,获得10
9秒前
9秒前
科研通AI6应助yfjia采纳,获得10
9秒前
10秒前
薛华倩发布了新的文献求助10
10秒前
小小完成签到 ,获得积分10
10秒前
11秒前
魏佳阁举报ydoyate求助涉嫌违规
11秒前
洒脱完成签到,获得积分10
11秒前
曾家钰完成签到 ,获得积分20
12秒前
小蘑菇应助WNL采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002232
求助须知:如何正确求助?哪些是违规求助? 4247341
关于积分的说明 13232693
捐赠科研通 4046224
什么是DOI,文献DOI怎么找? 2213497
邀请新用户注册赠送积分活动 1223569
关于科研通互助平台的介绍 1143899