Leukocytes Image Classification Using Optimized Convolutional Neural Networks

卷积神经网络 计算机科学 人工智能 图像(数学) 模式识别(心理学) 上下文图像分类 人工神经网络 机器学习
作者
Maryam Hosseini,Dana Bani-Hani,Sarah S. Lam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117672-117672 被引量:20
标识
DOI:10.1016/j.eswa.2022.117672
摘要

• Developed a fast and accurate hybrid approach for leukocyte classification. • Achieved fast convergence of hyperparameters with a random search approach. • Demonstrated superior performance of an optimized convolutional neural network. Hematologic diseases and blood disorders can be studied through the microscopic or chemical examination of blood smear images. Many researchers work on identifying, counting, and classifying different types of blood cells as a theoretical and practical problem that is crucial for disease diagnosis and treatment planning. There are various approaches to classify blood cells such as thresholding, morphological operators, segmentation, edge-based techniques, region-based techniques, and hybrid approaches. Each of these techniques has several limitations in effectively classifying different types of cells; however, methods based on deep learning (DL) have remarkably contributed to the progress of blood cell classification by combining feature extraction, feature selection, and classification into one interconnected step. This study develops a hybrid approach of DL and optimization for accurate and efficient classification of four types of leukocytes: neutrophils, eosinophils, lymphocytes, and monocytes. Model hyperparameters are optimized using grid search (GS) and random search (RS), in which a convolutional neural network (CNN) is used to classify leukocytes. CNNs work through pattern recognition to detect significant features that help distinguish different classes. The blood cell count and detection (BCCD) dataset provides basic information, but the data is insufficient and highly unbalanced for CNNs to accurately classify the images, so the data is augmented to improve model performance. This segmentation-free optimized CNN achieved a classification accuracy of 97% for the validation set, which includes 2,487 cell images, and 99% for the training set, which includes 9,966 cell images. The model reached a sensitivity and specificity of 94% and 98%, respectively. RS accelerates the process of hyperparameter optimization while achieving the same accuracy as GS. The results are compared with the results accomplished by recent CNN models on the BCCD database using seven performance measures and demonstrate the superior performance and competence of the proposed method. This research study develops a fast and accurate approach for leukocyte classification and can be beneficial for other image classification tasks and help clinicians in diagnosing blood diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好纠结伦完成签到,获得积分10
刚刚
CipherSage应助满意怜翠采纳,获得10
刚刚
1秒前
1秒前
坚定幻嫣完成签到 ,获得积分10
2秒前
大意的羊完成签到,获得积分10
2秒前
3秒前
3秒前
周周完成签到,获得积分10
4秒前
xiehexin发布了新的文献求助10
4秒前
5秒前
iVANPENNY应助科研小奶狗采纳,获得10
7秒前
miaomiao发布了新的文献求助10
7秒前
8秒前
zhuo发布了新的文献求助10
8秒前
8秒前
烯烃完成签到,获得积分10
9秒前
liiy完成签到,获得积分10
9秒前
成就的大米完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
12秒前
12秒前
赘婿应助科研通管家采纳,获得20
12秒前
wanci应助科研通管家采纳,获得10
12秒前
毛豆应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
毛豆应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得30
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
yar应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
13秒前
huo应助科研通管家采纳,获得10
13秒前
优秀的枕头完成签到,获得积分10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312499
求助须知:如何正确求助?哪些是违规求助? 2945157
关于积分的说明 8523210
捐赠科研通 2620967
什么是DOI,文献DOI怎么找? 1433156
科研通“疑难数据库(出版商)”最低求助积分说明 664898
邀请新用户注册赠送积分活动 650255