亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leukocytes Image Classification Using Optimized Convolutional Neural Networks

卷积神经网络 计算机科学 人工智能 图像(数学) 模式识别(心理学) 上下文图像分类 人工神经网络 机器学习
作者
Maryam Hosseini,Dana Bani-Hani,Sarah S. Lam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117672-117672 被引量:20
标识
DOI:10.1016/j.eswa.2022.117672
摘要

• Developed a fast and accurate hybrid approach for leukocyte classification. • Achieved fast convergence of hyperparameters with a random search approach. • Demonstrated superior performance of an optimized convolutional neural network. Hematologic diseases and blood disorders can be studied through the microscopic or chemical examination of blood smear images. Many researchers work on identifying, counting, and classifying different types of blood cells as a theoretical and practical problem that is crucial for disease diagnosis and treatment planning. There are various approaches to classify blood cells such as thresholding, morphological operators, segmentation, edge-based techniques, region-based techniques, and hybrid approaches. Each of these techniques has several limitations in effectively classifying different types of cells; however, methods based on deep learning (DL) have remarkably contributed to the progress of blood cell classification by combining feature extraction, feature selection, and classification into one interconnected step. This study develops a hybrid approach of DL and optimization for accurate and efficient classification of four types of leukocytes: neutrophils, eosinophils, lymphocytes, and monocytes. Model hyperparameters are optimized using grid search (GS) and random search (RS), in which a convolutional neural network (CNN) is used to classify leukocytes. CNNs work through pattern recognition to detect significant features that help distinguish different classes. The blood cell count and detection (BCCD) dataset provides basic information, but the data is insufficient and highly unbalanced for CNNs to accurately classify the images, so the data is augmented to improve model performance. This segmentation-free optimized CNN achieved a classification accuracy of 97% for the validation set, which includes 2,487 cell images, and 99% for the training set, which includes 9,966 cell images. The model reached a sensitivity and specificity of 94% and 98%, respectively. RS accelerates the process of hyperparameter optimization while achieving the same accuracy as GS. The results are compared with the results accomplished by recent CNN models on the BCCD database using seven performance measures and demonstrate the superior performance and competence of the proposed method. This research study develops a fast and accurate approach for leukocyte classification and can be beneficial for other image classification tasks and help clinicians in diagnosing blood diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰外套完成签到 ,获得积分10
2秒前
2秒前
4秒前
dreamer完成签到 ,获得积分10
5秒前
8秒前
zxy发布了新的文献求助10
9秒前
不被定义的风完成签到,获得积分10
10秒前
11秒前
lanmi完成签到,获得积分10
16秒前
Akim应助笨笨的元风采纳,获得10
17秒前
清逸发布了新的文献求助10
17秒前
XIA发布了新的文献求助10
17秒前
六个核桃完成签到,获得积分10
17秒前
一个绝望的文盲x完成签到,获得积分10
23秒前
无花果应助zxy采纳,获得10
26秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
29秒前
zxy完成签到,获得积分20
34秒前
王火火完成签到 ,获得积分10
39秒前
LYQ完成签到,获得积分10
42秒前
42秒前
Criminology34应助科研通管家采纳,获得10
48秒前
Criminology34应助科研通管家采纳,获得10
48秒前
Criminology34应助科研通管家采纳,获得10
48秒前
48秒前
Criminology34应助科研通管家采纳,获得10
48秒前
49秒前
快乐的晗发布了新的文献求助10
49秒前
还好还好发布了新的文献求助10
53秒前
猕猴桃发布了新的文献求助10
54秒前
虚拟的清炎完成签到 ,获得积分10
57秒前
天师神算完成签到,获得积分10
57秒前
丘比特应助三重积分咖啡采纳,获得10
59秒前
1分钟前
lovelife完成签到,获得积分10
1分钟前
年鱼精完成签到 ,获得积分10
1分钟前
kiko发布了新的文献求助20
1分钟前
1分钟前
孙成成完成签到 ,获得积分10
1分钟前
姜姗完成签到 ,获得积分10
1分钟前
wx完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346