亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Water quality classification using machine learning algorithms

人工智能 随机森林 机器学习 支持向量机 决策树 计算机科学 梯度升压 分类器(UML) Boosting(机器学习) 多层感知器 集成学习 随机子空间法 统计分类 数据挖掘 人工神经网络
作者
Nida Nasir,Afreen Kansal,Omar Alshaltone,Feras Barneih,Mustafa Sameer,Abdallah Shanableh,A. I. Al-Shamma’a
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:48: 102920-102920 被引量:297
标识
DOI:10.1016/j.jwpe.2022.102920
摘要

Monitoring water quality is essential for protecting human health and the environment and controlling water quality. Artificial Intelligence (AI) offers significant opportunities to help improve the classification and prediction of water quality (WQ). In this study, various AI algorithms are assessed to handle WQ data collected over an extended period and develop a dependable approach for forecasting water quality as accurately as possible. Specifically, various machine learning classifiers and their stacking ensemble models were used to classify the WQ data via the Water Quality Index (WQI). The studied classifiers included Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), CATBoost, XGBoost, and Multilayer Perceptron (MLP). The dataset used in the study included 1679 samples and their meta-data collected over nine years. In addition, precision-recall curves and Receiver Operating Characteristic curves (ROC) were used to assess the performance of the various classifiers. The findings revealed that the CATBoost model offered the most accurate classifier with a percentage of 94.51. Moreover, after applying stacking ensemble models with all classifiers, accuracy reached 100% in various Meta-classifiers. Furthermore, the CATBoost achieved the highest accuracy as a primary gradient boosting algorithm and a meta classifier. Therefore, the boosting algorithm is proposed as a reliable approach for the WQ classification. The analysis presented in this article presents a framework that can support the efforts of researchers working toward water quality improvement using artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CScs25发布了新的文献求助10
2秒前
懒大王完成签到,获得积分10
4秒前
8秒前
13秒前
shinn发布了新的文献求助10
15秒前
16秒前
17秒前
老婶子发布了新的文献求助10
19秒前
充电宝应助shinn采纳,获得10
19秒前
友好谷蓝发布了新的文献求助10
23秒前
26秒前
铭铭完成签到 ,获得积分10
26秒前
友好谷蓝完成签到,获得积分10
30秒前
30秒前
32秒前
35秒前
shinn发布了新的文献求助10
42秒前
无花果应助Omni采纳,获得10
43秒前
47秒前
48秒前
张元东完成签到 ,获得积分10
48秒前
MUYI发布了新的文献求助10
53秒前
科研通AI6.1应助taysun采纳,获得10
57秒前
快乐芷荷完成签到 ,获得积分10
1分钟前
炙热的南霜完成签到,获得积分10
1分钟前
无花果应助耕云钓月采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Tanya完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
MUYI完成签到,获得积分10
1分钟前
taysun发布了新的文献求助10
1分钟前
Lin完成签到,获得积分10
1分钟前
CodeCraft应助MUYI采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772446
求助须知:如何正确求助?哪些是违规求助? 5598683
关于积分的说明 15429642
捐赠科研通 4905409
什么是DOI,文献DOI怎么找? 2639381
邀请新用户注册赠送积分活动 1587308
关于科研通互助平台的介绍 1542165