已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Water quality classification using machine learning algorithms

人工智能 随机森林 机器学习 支持向量机 决策树 计算机科学 梯度升压 分类器(UML) Boosting(机器学习) 多层感知器 集成学习 随机子空间法 统计分类 数据挖掘 人工神经网络
作者
Nida Nasir,Afreen Kansal,Omar Alshaltone,Feras Barneih,Mustafa Sameer,Abdallah Shanableh,A. I. Al-Shamma’a
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:48: 102920-102920 被引量:230
标识
DOI:10.1016/j.jwpe.2022.102920
摘要

Monitoring water quality is essential for protecting human health and the environment and controlling water quality. Artificial Intelligence (AI) offers significant opportunities to help improve the classification and prediction of water quality (WQ). In this study, various AI algorithms are assessed to handle WQ data collected over an extended period and develop a dependable approach for forecasting water quality as accurately as possible. Specifically, various machine learning classifiers and their stacking ensemble models were used to classify the WQ data via the Water Quality Index (WQI). The studied classifiers included Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), CATBoost, XGBoost, and Multilayer Perceptron (MLP). The dataset used in the study included 1679 samples and their meta-data collected over nine years. In addition, precision-recall curves and Receiver Operating Characteristic curves (ROC) were used to assess the performance of the various classifiers. The findings revealed that the CATBoost model offered the most accurate classifier with a percentage of 94.51. Moreover, after applying stacking ensemble models with all classifiers, accuracy reached 100% in various Meta-classifiers. Furthermore, the CATBoost achieved the highest accuracy as a primary gradient boosting algorithm and a meta classifier. Therefore, the boosting algorithm is proposed as a reliable approach for the WQ classification. The analysis presented in this article presents a framework that can support the efforts of researchers working toward water quality improvement using artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简啦啦发布了新的文献求助10
刚刚
原初发布了新的文献求助10
刚刚
在水一方应助大西瓜采纳,获得10
1秒前
Ruoru发布了新的文献求助10
1秒前
浮游应助mokano采纳,获得10
3秒前
4秒前
酷波er应助ss采纳,获得10
4秒前
KY寜发布了新的文献求助80
4秒前
hhh发布了新的文献求助10
5秒前
5秒前
酷波er应助YAN采纳,获得10
6秒前
6秒前
会发光的碳完成签到,获得积分10
7秒前
Zr发布了新的文献求助10
7秒前
K先生完成签到 ,获得积分10
8秒前
老实醉冬发布了新的文献求助10
9秒前
惊鸿客应助mokano采纳,获得10
9秒前
10秒前
敏er好学发布了新的文献求助10
11秒前
jiaojiao发布了新的文献求助10
12秒前
彼岸发布了新的文献求助10
12秒前
KY寜完成签到,获得积分10
13秒前
22222发布了新的文献求助10
14秒前
15秒前
聪聪发布了新的文献求助10
16秒前
16秒前
老实醉冬完成签到,获得积分10
20秒前
Cactus应助ketyl采纳,获得10
20秒前
不二发布了新的文献求助10
21秒前
21秒前
21秒前
活泼海冬发布了新的文献求助10
22秒前
所所应助聪聪采纳,获得10
22秒前
完美信封完成签到,获得积分10
23秒前
24秒前
稳重书双发布了新的文献求助10
24秒前
24秒前
ixueyi发布了新的文献求助10
27秒前
LY发布了新的文献求助10
27秒前
apckkk完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089902
求助须知:如何正确求助?哪些是违规求助? 4304570
关于积分的说明 13414485
捐赠科研通 4130250
什么是DOI,文献DOI怎么找? 2262131
邀请新用户注册赠送积分活动 1266081
关于科研通互助平台的介绍 1200780