Water quality classification using machine learning algorithms

人工智能 随机森林 机器学习 支持向量机 决策树 计算机科学 梯度升压 分类器(UML) Boosting(机器学习) 多层感知器 集成学习 随机子空间法 统计分类 数据挖掘 人工神经网络
作者
Nida Nasir,Afreen Kansal,Omar Alshaltone,Feras Barneih,Mustafa Sameer,Abdallah Shanableh,A. I. Al-Shamma’a
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:48: 102920-102920 被引量:230
标识
DOI:10.1016/j.jwpe.2022.102920
摘要

Monitoring water quality is essential for protecting human health and the environment and controlling water quality. Artificial Intelligence (AI) offers significant opportunities to help improve the classification and prediction of water quality (WQ). In this study, various AI algorithms are assessed to handle WQ data collected over an extended period and develop a dependable approach for forecasting water quality as accurately as possible. Specifically, various machine learning classifiers and their stacking ensemble models were used to classify the WQ data via the Water Quality Index (WQI). The studied classifiers included Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), CATBoost, XGBoost, and Multilayer Perceptron (MLP). The dataset used in the study included 1679 samples and their meta-data collected over nine years. In addition, precision-recall curves and Receiver Operating Characteristic curves (ROC) were used to assess the performance of the various classifiers. The findings revealed that the CATBoost model offered the most accurate classifier with a percentage of 94.51. Moreover, after applying stacking ensemble models with all classifiers, accuracy reached 100% in various Meta-classifiers. Furthermore, the CATBoost achieved the highest accuracy as a primary gradient boosting algorithm and a meta classifier. Therefore, the boosting algorithm is proposed as a reliable approach for the WQ classification. The analysis presented in this article presents a framework that can support the efforts of researchers working toward water quality improvement using artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
dr_luo发布了新的文献求助10
刚刚
陈一昂发布了新的文献求助10
1秒前
科目三应助123456采纳,获得10
1秒前
2秒前
热心傲珊发布了新的文献求助10
3秒前
dadadjk关注了科研通微信公众号
3秒前
科研通AI6应助虚幻德地采纳,获得10
3秒前
科研通AI6应助dudu采纳,获得10
4秒前
4秒前
4秒前
4秒前
善学以致用应助dr_luo采纳,获得10
6秒前
852应助嘿嘿嘿采纳,获得10
6秒前
火星上问梅完成签到,获得积分10
7秒前
lily发布了新的文献求助10
7秒前
科研通AI2S应助小新爱科研采纳,获得10
8秒前
天下无双完成签到,获得积分20
9秒前
pzh发布了新的文献求助10
9秒前
OvO_4577发布了新的文献求助10
9秒前
10秒前
Hoper完成签到,获得积分10
11秒前
烦死了啦完成签到,获得积分10
11秒前
meganzhang完成签到,获得积分10
11秒前
orixero应助是那个蔡峥采纳,获得30
13秒前
daizheng发布了新的文献求助10
13秒前
Liuu完成签到,获得积分10
14秒前
科研通AI2S应助Diego采纳,获得10
14秒前
14秒前
gfbh完成签到,获得积分10
14秒前
张雨露完成签到 ,获得积分10
14秒前
华仔应助111采纳,获得10
14秒前
15秒前
15秒前
15秒前
Ming完成签到,获得积分10
15秒前
阿媛呐完成签到,获得积分10
16秒前
东风完成签到,获得积分20
17秒前
不是山谷完成签到,获得积分10
17秒前
17秒前
田又又完成签到,获得积分20
18秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501725
求助须知:如何正确求助?哪些是违规求助? 4597854
关于积分的说明 14461219
捐赠科研通 4531385
什么是DOI,文献DOI怎么找? 2483321
邀请新用户注册赠送积分活动 1466799
关于科研通互助平台的介绍 1439461