Water quality classification using machine learning algorithms

人工智能 随机森林 机器学习 支持向量机 决策树 计算机科学 梯度升压 分类器(UML) Boosting(机器学习) 多层感知器 集成学习 随机子空间法 统计分类 数据挖掘 人工神经网络
作者
Nida Nasir,Afreen Kansal,Omar Alshaltone,Feras Barneih,Mustafa Sameer,Abdallah Shanableh,A. I. Al-Shamma’a
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:48: 102920-102920 被引量:135
标识
DOI:10.1016/j.jwpe.2022.102920
摘要

Monitoring water quality is essential for protecting human health and the environment and controlling water quality. Artificial Intelligence (AI) offers significant opportunities to help improve the classification and prediction of water quality (WQ). In this study, various AI algorithms are assessed to handle WQ data collected over an extended period and develop a dependable approach for forecasting water quality as accurately as possible. Specifically, various machine learning classifiers and their stacking ensemble models were used to classify the WQ data via the Water Quality Index (WQI). The studied classifiers included Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), CATBoost, XGBoost, and Multilayer Perceptron (MLP). The dataset used in the study included 1679 samples and their meta-data collected over nine years. In addition, precision-recall curves and Receiver Operating Characteristic curves (ROC) were used to assess the performance of the various classifiers. The findings revealed that the CATBoost model offered the most accurate classifier with a percentage of 94.51. Moreover, after applying stacking ensemble models with all classifiers, accuracy reached 100% in various Meta-classifiers. Furthermore, the CATBoost achieved the highest accuracy as a primary gradient boosting algorithm and a meta classifier. Therefore, the boosting algorithm is proposed as a reliable approach for the WQ classification. The analysis presented in this article presents a framework that can support the efforts of researchers working toward water quality improvement using artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangzai发布了新的文献求助10
1秒前
鱼咬羊完成签到,获得积分10
1秒前
大君哥发布了新的文献求助10
3秒前
ding应助Micah采纳,获得10
3秒前
3秒前
lvjiahui发布了新的文献求助50
5秒前
8秒前
8秒前
甜甜发布了新的文献求助10
8秒前
明天肯定学习完成签到,获得积分20
9秒前
10秒前
Li完成签到,获得积分10
10秒前
wys发布了新的文献求助10
11秒前
桂力关注了科研通微信公众号
11秒前
CT完成签到,获得积分10
11秒前
彭于彦祖应助songlf23采纳,获得30
13秒前
华仔应助嘎嘎采纳,获得10
13秒前
13秒前
14秒前
YYB65发布了新的文献求助10
14秒前
言语发布了新的文献求助30
14秒前
万寿宫人完成签到,获得积分10
15秒前
伶俐的千柔完成签到,获得积分10
16秒前
Owen应助西早采纳,获得10
16秒前
16秒前
年轻的凝云完成签到 ,获得积分10
16秒前
16秒前
17秒前
20秒前
嘎嘎完成签到,获得积分20
20秒前
KaiZI发布了新的文献求助10
20秒前
21秒前
CT发布了新的文献求助10
21秒前
木槿发布了新的文献求助10
21秒前
科研通AI2S应助YYB65采纳,获得10
22秒前
WongGingYong完成签到,获得积分10
23秒前
吃瓜群众完成签到,获得积分10
23秒前
深情安青应助二马三乡采纳,获得10
24秒前
监理zhou完成签到,获得积分10
25秒前
CipherSage应助Wl0115采纳,获得10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150