已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Water quality classification using machine learning algorithms

人工智能 随机森林 机器学习 支持向量机 决策树 计算机科学 梯度升压 分类器(UML) Boosting(机器学习) 多层感知器 集成学习 随机子空间法 统计分类 数据挖掘 人工神经网络
作者
Nida Nasir,Afreen Kansal,Omar Alshaltone,Feras Barneih,Mustafa Sameer,Abdallah Shanableh,A. I. Al-Shamma’a
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:48: 102920-102920 被引量:135
标识
DOI:10.1016/j.jwpe.2022.102920
摘要

Monitoring water quality is essential for protecting human health and the environment and controlling water quality. Artificial Intelligence (AI) offers significant opportunities to help improve the classification and prediction of water quality (WQ). In this study, various AI algorithms are assessed to handle WQ data collected over an extended period and develop a dependable approach for forecasting water quality as accurately as possible. Specifically, various machine learning classifiers and their stacking ensemble models were used to classify the WQ data via the Water Quality Index (WQI). The studied classifiers included Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), CATBoost, XGBoost, and Multilayer Perceptron (MLP). The dataset used in the study included 1679 samples and their meta-data collected over nine years. In addition, precision-recall curves and Receiver Operating Characteristic curves (ROC) were used to assess the performance of the various classifiers. The findings revealed that the CATBoost model offered the most accurate classifier with a percentage of 94.51. Moreover, after applying stacking ensemble models with all classifiers, accuracy reached 100% in various Meta-classifiers. Furthermore, the CATBoost achieved the highest accuracy as a primary gradient boosting algorithm and a meta classifier. Therefore, the boosting algorithm is proposed as a reliable approach for the WQ classification. The analysis presented in this article presents a framework that can support the efforts of researchers working toward water quality improvement using artificial intelligence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七完成签到 ,获得积分10
刚刚
小糖豆发布了新的文献求助10
2秒前
4秒前
kitty发布了新的文献求助10
6秒前
文静元风完成签到,获得积分10
8秒前
9秒前
Singularity应助文艺沛文采纳,获得10
9秒前
土豆完成签到,获得积分10
10秒前
脑洞疼应助李昶采纳,获得10
14秒前
14秒前
ccm应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得50
14秒前
脑洞疼应助科研通管家采纳,获得30
15秒前
15秒前
思源应助科研通管家采纳,获得10
15秒前
FashionBoy应助ptyz霍建华采纳,获得10
15秒前
18秒前
尽力发布了新的文献求助10
18秒前
20秒前
乐乐乐乐乐乐应助SSS采纳,获得10
21秒前
22秒前
科目三应助中意采纳,获得10
23秒前
sally发布了新的文献求助30
23秒前
星辰至宇完成签到 ,获得积分10
24秒前
李昶完成签到,获得积分10
26秒前
雨琴发布了新的文献求助10
27秒前
Singularity应助瀚森采纳,获得20
28秒前
28秒前
李昶发布了新的文献求助10
28秒前
从容芮应助周裕川采纳,获得10
28秒前
吉里巴完成签到,获得积分20
29秒前
小飞龙完成签到 ,获得积分10
29秒前
30秒前
31秒前
开放铅笔完成签到 ,获得积分10
31秒前
33秒前
WSX发布了新的文献求助10
34秒前
吉里巴发布了新的文献求助10
34秒前
34秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142425
求助须知:如何正确求助?哪些是违规求助? 2793350
关于积分的说明 7806409
捐赠科研通 2449622
什么是DOI,文献DOI怎么找? 1303363
科研通“疑难数据库(出版商)”最低求助积分说明 626850
版权声明 601309