内分泌学
内科学
福克斯O1
AMP活化蛋白激酶
化学
安普克
蛋白激酶B
二甲双胍
2型糖尿病
胰岛素
蛋白激酶A
生物
激酶
生物化学
糖尿病
信号转导
医学
作者
Xiao-Qin He,Weizhou Li,Yuanyuan Chen,Lei Lin,Fuhua Li,Jichun Zhao,Kaifang Zeng,Jian Ming
标识
DOI:10.1016/j.foodres.2022.111386
摘要
Type 2 diabetes is a serious threat to human health. Tartary buckwheat bran dietary fiber has good hypoglycemic activity, with its modification widely studied. However, the hypoglycemic activity of steam explosion modified Tartary buckwheat bran soluble dietary fiber (SE-SDF) has not been reported. This research aimed at investigating the hypoglycemic effect with its underlying mechanism of SE-SDF on type 2 diabetic db/db mice. Results found SE-SDF decreased the levels of fasting blood glucose and glycosylated hemoglobin while improved oral glucose tolerance, insulin resistance, and injuries of liver, pancreas, and colon in diabetic db/db mice. Additionally, SE-SDF up-regulated the protein expression levels of hepatic phosphatidylinositol 3 kinase (PI3K), G protein-coupled receptor43 (GPR43), and phospho-adenosine monophosphate activated protein kinase (p-AMPK), whereas inhibited the protein expression levels of hepatic fork-head transcription factor O1 (FoxO1), phosphoenolpyruvate carboxy kinase (PEPCK) and glucose-6-phosphatase (G-6-Pase). Moreover, SE-SDF increased the production of fecal short chain fatty acids (SCFAs) and the expression of colon GPR43 and the concentration of serum glucagon like peptide-1 (GLP-1), leading to reduced ratio of Firmicutes/Bacteroidetes but increased relative abundance of Parabacteroides, norank_f_Muribaculaceae, Alloprevotella, Ruminiclostridium_9, unclassified_f_Ruminococcaceae, and Lachnospiraceae_NK4A136_group. These findings suggested that SE-SDF ameliorated type 2 diabetes via activating the liver PI3K/Akt/FoxO1 and GPR43/AMPK signaling pathways and modulating the gut microbiota-SCFAs-GPR43/GLP-1 signaling axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI