Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet

材料科学 带隙 半导体 应变工程 光电子学 基质(水族馆) 自旋电子学 光致发光 拉曼光谱 光子学 纳米技术 凝聚态物理 直接和间接带隙 石墨烯 光学 铁磁性 地质学 物理 海洋学
作者
Yeung Yu Hui,Xiaofei Liu,Wenjing Jie,Ngai Yui Chan,Jianhua Hao,Yu-Te Hsu,Lain‐Jong Li,Wei Guo,Shu Ping Lau
出处
期刊:ACS Nano [American Chemical Society]
卷期号:7 (8): 7126-7131 被引量:557
标识
DOI:10.1021/nn4024834
摘要

Tuning band energies of semiconductors through strain engineering can significantly enhance their electronic, photonic, and spintronic performances. Although low-dimensional nanostructures are relatively flexible, the reported tunability of the band gap is within 100 meV per 1% strain. It is also challenging to control strains in atomically thin semiconductors precisely and monitor the optical and phonon properties simultaneously. Here, we developed an electromechanical device that can apply biaxial compressive strain to trilayer MoS2 supported by a piezoelectric substrate and covered by a transparent graphene electrode. Photoluminescence and Raman characterizations show that the direct band gap can be blue-shifted for ∼300 meV per 1% strain. First-principles investigations confirm the blue-shift of the direct band gap and reveal a higher tunability of the indirect band gap than the direct one. The exceptionally high strain tunability of the electronic structure in MoS2 promising a wide range of applications in functional nanodevices and the developed methodology should be generally applicable for two-dimensional semiconductors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然的飞珍完成签到,获得积分10
刚刚
Ava应助luuuuuing采纳,获得30
1秒前
高高千筹完成签到,获得积分10
1秒前
Jasper应助哲000采纳,获得10
2秒前
调皮的天真完成签到 ,获得积分10
2秒前
1ssd应助有风采纳,获得10
2秒前
2秒前
奇奇怪怪完成签到,获得积分10
3秒前
TanFT发布了新的文献求助10
3秒前
青鸟飞鱼完成签到,获得积分10
3秒前
吴吴发布了新的文献求助10
4秒前
ShengjuChen完成签到 ,获得积分10
4秒前
4秒前
CipherSage应助标致小伙采纳,获得10
4秒前
科研通AI5应助深爱不疑采纳,获得10
4秒前
艺术家脾气完成签到,获得积分10
5秒前
6秒前
unicornmed发布了新的文献求助10
6秒前
可爱的函函应助茶艺如何采纳,获得10
7秒前
江知之完成签到 ,获得积分0
7秒前
7秒前
9秒前
刻苦问柳发布了新的文献求助10
9秒前
酷酷平卉完成签到 ,获得积分10
9秒前
星辰大海应助吴吴采纳,获得30
9秒前
JTB发布了新的文献求助10
9秒前
BILNQPL发布了新的文献求助10
9秒前
兮遥遥完成签到 ,获得积分10
10秒前
10秒前
10秒前
丰知然应助轩辕德地采纳,获得10
11秒前
12秒前
吨吨喝水关注了科研通微信公众号
12秒前
酷波er应助某只橘猫君采纳,获得10
12秒前
12秒前
stt发布了新的文献求助10
12秒前
12秒前
Ling完成签到,获得积分10
12秒前
TanFT完成签到,获得积分10
13秒前
笙歌自若发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762