Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types

长期变化 变化(天文学) 分馏 环境科学 地质学 化学 材料科学 物理 冶金 天体物理学 地球物理学 有机化学
作者
Michel Cuney
出处
期刊:Economic geology and the bulletin of the Society of Economic Geologists [Society of Economic Geologists]
卷期号:105 (3): 553-569 被引量:193
标识
DOI:10.2113/gsecongeo.105.3.553
摘要

Uranium deposit types have evolved considerably from the Archean to the Present. The major global drivers were (1) change of geotectonic conditions during the Late Archean, (2) strong increase of atmospheric oxygen from 2.4 to 2.2 Ga, and (3) development of land plants during the Silurian. Other significant variations of uranium deposit types are related to unique conjunctions of conditions such as those during phosphate sedimentation in the Cretaceous. Earth’s uranium fractionation mechanisms evolved through four major periods. The first, from 4.55 and 3.2 Ga, corresponds to formation of a thin essentially mafic crust in which the most fractionated trondheimite-tonalite-granodiorite (TTG) rocks attained uranium concentrations of at most a few parts per million. Moreover, the uranium being essentially hosted in refractory accessory minerals and free oxygen being absent, no uranium deposit could be expected to have formed during this period. The second period, from about 3.1 to 2.2 Ga, is characterized by several widespread pulses of highly fractionated potassic granite strongly enriched in U, Th, and K. Late in this period peraluminous granite was selectively enriched in U and to a lesser extent K. These were the first granite and pegmatite magmas able to crystallize high-temperature uraninite. The erosion of these granitic suites liberated thorium-rich uraninite which would then be concentrated in placer deposits along with pyrite and other heavy minerals (e.g., zircon, monazite, Fe-Ti oxides) within huge continental basins (e.g., Witwatersrand, South Africa, and Bind River, Canada). The lack of free oxygen at that time prevented oxidation of the uraninite which formed the oldest economic uranium deposit types on Earth, but only during this period. The third period, from 2.2 to 0.45 Ga, records increased oxygen to nearly the present atmospheric level. Tetravalent uranium from uraninite was oxidized to hexavalent uranium, forming highly soluble uranyl ions in water. Uranium was extensively trapped in reduced epicontinental sedimentary successions along with huge quantities of organic matter and phosphates accumulated as a consequence of biological proliferation, especially during the Late Paleoproterozoic. A series of uranium deposits formed through redox processes; the first of these developed at a formational redox boundary at about 2.0 Ga in the Oklo area of Gabon. All known economically significant uranium deposits related to Na metasomatism are about 1.8 Ga in age. The high-grade, large tonnage unconformity-related deposits also formed essentially during the Late Paleoproterozoic to early Mesoproterozoic. The last period (0.45 Ga-Present) coincided with the colonization of continents by plants. The detrital accumulation of plants within continental siliciclastic strata represented intraformational reduced traps for another family of uranium deposits that developed essentially only during this period: basal, roll front, tabular, and tectonolithologic types. However, the increased recognition of hydrocarbon and hydrogen sulfide migration from oil or gas reservoirs during diagenesis suggests potential for sandstone-hosted uranium deposits to be found within permeable sandstone older than the Silurian. Large uranium deposits related to high-level hydrothermal fluid circulation and those related to evapotranspiration (calcretes) are only known during this last period of time, probably because of their formation in near-surface environments with low preservation potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布蓝图完成签到 ,获得积分10
2秒前
cis2014发布了新的文献求助10
2秒前
HLT完成签到 ,获得积分10
9秒前
厘米完成签到 ,获得积分10
12秒前
朴实初夏完成签到 ,获得积分10
22秒前
lilylwy完成签到 ,获得积分0
27秒前
量子星尘发布了新的文献求助10
28秒前
peiter发布了新的文献求助10
29秒前
春天的粥完成签到 ,获得积分10
40秒前
怡然小蚂蚁完成签到 ,获得积分10
41秒前
石石刘完成签到 ,获得积分10
46秒前
CXS完成签到,获得积分10
47秒前
eternal_dreams完成签到 ,获得积分10
48秒前
nuliguan完成签到 ,获得积分10
51秒前
小北完成签到 ,获得积分10
52秒前
科目三应助猪猪hero采纳,获得10
1分钟前
Jeffery426发布了新的文献求助10
1分钟前
时代更迭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
luoyukejing完成签到,获得积分10
1分钟前
幽默艳发布了新的文献求助10
1分钟前
罗添龙发布了新的文献求助10
1分钟前
W~舞发布了新的文献求助10
1分钟前
唯梦完成签到 ,获得积分10
1分钟前
优雅莞完成签到,获得积分10
1分钟前
SciGPT应助ly采纳,获得10
1分钟前
我是老大应助罗添龙采纳,获得10
1分钟前
harry2021完成签到,获得积分10
1分钟前
天水张家辉完成签到,获得积分10
1分钟前
1分钟前
烟火会翻滚完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ly发布了新的文献求助10
1分钟前
dldldl完成签到,获得积分10
1分钟前
adazbq完成签到 ,获得积分0
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008738
求助须知:如何正确求助?哪些是违规求助? 3548380
关于积分的说明 11298823
捐赠科研通 3283051
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218