Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model

Gompertz函数 动力学 细菌生长 银纳米粒子 细菌 荧光显微镜 大肠杆菌 致病菌 化学 生物 微生物学 材料科学 荧光 纳米颗粒 纳米技术 生物化学 数学 基因 统计 物理 量子力学 遗传学
作者
Tanaya Chatterjee,B. Chatterjee,Dipanwita Majumdar,Pinak Chakrabarti
出处
期刊:Biochimica Et Biophysica Acta - General Subjects [Elsevier]
卷期号:1850 (2): 299-306 被引量:131
标识
DOI:10.1016/j.bbagen.2014.10.022
摘要

An alternative to conventional antibiotics is needed to fight against emerging multiple drug resistant pathogenic bacteria. In this endeavor, the effect of silver nanoparticle (Ag-NP) has been studied quantitatively on two common pathogenic bacteria Escherichia coli and Staphylococcus aureus, and the growth curves were modeled.The effect of Ag-NP on bacterial growth kinetics was studied by measuring the optical density, and was fitted by non-linear regression using the Logistic and modified Gompertz models. Scanning Electron Microscopy and fluorescence microscopy were used to study the morphological changes of the bacterial cells. Generation of reactive oxygen species for Ag-NP treated cells were measured by fluorescence emission spectra.The modified Gompertz model, incorporating cell death, fits the observed data better than the Logistic model. With increasing concentration of Ag-NP, the growth kinetics of both bacteria shows a decline in growth rate with simultaneous enhancement of death rate constants. The duration of the lag phase was found to increase with Ag-NP concentration. SEM showed morphological changes, while fluorescence microscopy using DAPI showed compaction of DNA for Ag-NP-treated bacterial cells.E. coli was found to be more susceptible to Ag-NP as compared to S. aureus. The modified Gompertz model, using a death term, was found to be useful in explaining the non-monotonic nature of the growth curve.The modified Gompertz model derived here is of general nature and can be used to study any microbial growth kinetics under the influence of antimicrobial agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古药完成签到,获得积分10
1秒前
赘婿应助烟雨行舟采纳,获得10
1秒前
seal发布了新的文献求助10
2秒前
2秒前
3秒前
不吃香菜发布了新的文献求助10
3秒前
RC_Wang应助ZJJ采纳,获得10
3秒前
Chridy发布了新的文献求助10
4秒前
4秒前
asipilin完成签到,获得积分10
4秒前
鼻揩了转去应助lixoii采纳,获得20
4秒前
5秒前
万能图书馆应助Steve采纳,获得10
6秒前
6秒前
6秒前
颛颛完成签到 ,获得积分10
7秒前
不安钢铁侠完成签到,获得积分10
7秒前
学术z完成签到,获得积分10
7秒前
小二郎应助yty采纳,获得10
7秒前
神帅酷哥完成签到,获得积分10
9秒前
9秒前
ljw完成签到,获得积分10
9秒前
xzy发布了新的文献求助20
9秒前
9秒前
守夜人发布了新的文献求助10
10秒前
10秒前
10秒前
珲雯发布了新的文献求助10
11秒前
11秒前
德尔塔捱斯完成签到,获得积分10
11秒前
小夏完成签到 ,获得积分0
12秒前
luuuuuu完成签到,获得积分10
12秒前
太阳alright完成签到,获得积分10
12秒前
雨辰发布了新的文献求助10
13秒前
在水一方应助lai采纳,获得10
13秒前
Yiiimmmwang完成签到,获得积分20
13秒前
FashionBoy应助小田心采纳,获得10
13秒前
Orange应助芳芳采纳,获得10
14秒前
汉堡包应助斯文黎云采纳,获得10
14秒前
通~发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794