Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies

因果推理 工具变量 协变量 逆概率加权 计量经济学 观察研究 选择偏差 混淆 统计 生物统计学 估计员 数学 医学 流行病学 内科学
作者
Joseph W. Hogan,Tony Lancaster
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:13 (1): 17-48 被引量:129
标识
DOI:10.1191/0962280204sm351ra
摘要

Inferring causal effects from longitudinal repeated measures data has high relevance to a number of areas of research, including economics, social sciences and epidemiology. In observational studies in particular, the treatment receipt mechanism is typically not under the control of the investigator; it can depend on various factors, including the outcome of interest. This results in differential selection into treatment levels, and can lead to selection bias when standard routines such as least squares regression are used to estimate causal effects. Interestingly, both the characterization of and methodology for handling selection bias can differ substantially by disciplinary tradition. In social sciences and economics, instrumental variables (IV) is the standard method for estimating linear and nonlinear models in which the error term may be correlated with an observed covariate. When such correlation is not ruled out, the covariate is called endogenous and least squares estimates of the covariate effect are typically biased. The availability of an instrumental variable can be used to reduce or eliminate the bias. In public health and clinical medicine (e.g., epidemiology and biostatistics), selection bias is typically viewed in terms of confounders, and the prevailing methods are geared toward making proper adjustments via explicit use of observed confounders (e.g., stratification, standardization). A class of methods known as inverse probability weighting (IPW) estimators, which relies on modeling selection in terms of confounders, is gaining in popularity for making such adjustments. Our objective is to review and compare IPW and IV for estimating causal treatment effects from longitudinal data, where the treatment may vary with time. We accomplish this by defining the causal estimands in terms of a linear stochastic model of potential outcomes (counterfactuals). Our comparison includes a review of terminology typically used in discussions of causal inference (e.g., confounding, endogeneity); a review of assumptions required to identify causal effects and their implications for estimation and interpretation; description of estimation via inverse weighting and instrumental variables; and a comparative analysis of data from a longitudinal cohort study of HIV-infected women. In our discussion of assumptions and estimation routines, we try to emphasize sufficient conditions needed to implement relatively standard analyses that can essentially be formulated as regression models. In that sense this review is geared toward the quantitative practitioner. The objective of the data analysis is to estimate the causal (therapeutic) effect of receiving combination antiviral therapy on longitudinal CD4 cell counts, where receipt of therapy varies with time and depends on CD4 count and other covariates. Assumptions are reviewed in context, and resulting inferences are compared. The analysis illustrates the importance of considering the existence of unmeasured confounding and of checking for ‘weak instruments.’ It also suggests that IV methodology may have a role in longitudinal cohort studies where potential instrumental variables are available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浪沧一刀完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
3秒前
CLX。完成签到,获得积分10
3秒前
4秒前
4秒前
求助人员发布了新的文献求助10
5秒前
7秒前
北鸢完成签到,获得积分10
7秒前
烂漫的凡波完成签到,获得积分10
7秒前
7秒前
hui发布了新的文献求助10
9秒前
小蜗牛完成签到,获得积分10
9秒前
番茄鱼完成签到 ,获得积分10
9秒前
qqq完成签到 ,获得积分10
9秒前
gooofy发布了新的文献求助50
10秒前
11秒前
11秒前
12秒前
j7完成签到 ,获得积分10
12秒前
12秒前
LaTeXer应助qinqinwy采纳,获得10
13秒前
14秒前
yznfly应助wang采纳,获得180
14秒前
believe完成签到,获得积分20
15秒前
qiuqi发布了新的文献求助10
15秒前
QLLW完成签到,获得积分10
16秒前
王cc发布了新的文献求助10
16秒前
jiuwu完成签到,获得积分10
17秒前
星辰大海应助Lu采纳,获得10
17秒前
沉静的煎蛋完成签到,获得积分10
18秒前
20秒前
20秒前
FashionBoy应助活泼醉冬采纳,获得10
21秒前
NexusExplorer应助hui采纳,获得10
21秒前
陈杰完成签到,获得积分10
23秒前
昭明完成签到 ,获得积分10
23秒前
璃光浮月发布了新的文献求助10
24秒前
24秒前
AquaR发布了新的文献求助10
24秒前
Rgly完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851