Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies

因果推理 工具变量 协变量 逆概率加权 计量经济学 观察研究 选择偏差 混淆 统计 生物统计学 估计员 数学 医学 流行病学 内科学
作者
Joseph W. Hogan,Tony Lancaster
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:13 (1): 17-48 被引量:129
标识
DOI:10.1191/0962280204sm351ra
摘要

Inferring causal effects from longitudinal repeated measures data has high relevance to a number of areas of research, including economics, social sciences and epidemiology. In observational studies in particular, the treatment receipt mechanism is typically not under the control of the investigator; it can depend on various factors, including the outcome of interest. This results in differential selection into treatment levels, and can lead to selection bias when standard routines such as least squares regression are used to estimate causal effects. Interestingly, both the characterization of and methodology for handling selection bias can differ substantially by disciplinary tradition. In social sciences and economics, instrumental variables (IV) is the standard method for estimating linear and nonlinear models in which the error term may be correlated with an observed covariate. When such correlation is not ruled out, the covariate is called endogenous and least squares estimates of the covariate effect are typically biased. The availability of an instrumental variable can be used to reduce or eliminate the bias. In public health and clinical medicine (e.g., epidemiology and biostatistics), selection bias is typically viewed in terms of confounders, and the prevailing methods are geared toward making proper adjustments via explicit use of observed confounders (e.g., stratification, standardization). A class of methods known as inverse probability weighting (IPW) estimators, which relies on modeling selection in terms of confounders, is gaining in popularity for making such adjustments. Our objective is to review and compare IPW and IV for estimating causal treatment effects from longitudinal data, where the treatment may vary with time. We accomplish this by defining the causal estimands in terms of a linear stochastic model of potential outcomes (counterfactuals). Our comparison includes a review of terminology typically used in discussions of causal inference (e.g., confounding, endogeneity); a review of assumptions required to identify causal effects and their implications for estimation and interpretation; description of estimation via inverse weighting and instrumental variables; and a comparative analysis of data from a longitudinal cohort study of HIV-infected women. In our discussion of assumptions and estimation routines, we try to emphasize sufficient conditions needed to implement relatively standard analyses that can essentially be formulated as regression models. In that sense this review is geared toward the quantitative practitioner. The objective of the data analysis is to estimate the causal (therapeutic) effect of receiving combination antiviral therapy on longitudinal CD4 cell counts, where receipt of therapy varies with time and depends on CD4 count and other covariates. Assumptions are reviewed in context, and resulting inferences are compared. The analysis illustrates the importance of considering the existence of unmeasured confounding and of checking for ‘weak instruments.’ It also suggests that IV methodology may have a role in longitudinal cohort studies where potential instrumental variables are available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助w1kend采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
无极微光应助橘子采纳,获得20
3秒前
苛帅发布了新的文献求助10
4秒前
5秒前
共享精神应助gan采纳,获得10
5秒前
6秒前
大头娃娃发布了新的文献求助10
6秒前
lai发布了新的文献求助10
6秒前
7秒前
汉堡包应助guo采纳,获得10
9秒前
冰激凌发布了新的文献求助10
10秒前
11秒前
希望天下0贩的0应助Ge采纳,获得10
11秒前
李健应助lai采纳,获得10
12秒前
骆西西发布了新的文献求助10
13秒前
banban完成签到,获得积分10
13秒前
科研通AI2S应助大可采纳,获得10
14秒前
14秒前
脑洞疼应助w1kend采纳,获得10
15秒前
在水一方应助瓜瓜瓜采纳,获得20
16秒前
香蕉觅云应助小巧的柚子采纳,获得10
16秒前
29发布了新的文献求助10
16秒前
liu完成签到,获得积分10
17秒前
锦沫完成签到,获得积分10
17秒前
111发布了新的文献求助10
17秒前
爱笑的紫霜完成签到 ,获得积分10
18秒前
CipherSage应助zhangyu采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
李虹发布了新的文献求助10
21秒前
冷空气发布了新的文献求助10
24秒前
杰尼龟发布了新的文献求助10
26秒前
kk发布了新的文献求助10
26秒前
27秒前
JamesPei应助seven采纳,获得10
28秒前
我是老大应助香香的臭宝采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680124
求助须知:如何正确求助?哪些是违规求助? 4996372
关于积分的说明 15171821
捐赠科研通 4839954
什么是DOI,文献DOI怎么找? 2593739
邀请新用户注册赠送积分活动 1546730
关于科研通互助平台的介绍 1504779