已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies

因果推理 工具变量 协变量 逆概率加权 计量经济学 观察研究 选择偏差 混淆 统计 生物统计学 估计员 数学 医学 流行病学 内科学
作者
Joseph W. Hogan,Tony Lancaster
出处
期刊:Statistical Methods in Medical Research [SAGE Publishing]
卷期号:13 (1): 17-48 被引量:129
标识
DOI:10.1191/0962280204sm351ra
摘要

Inferring causal effects from longitudinal repeated measures data has high relevance to a number of areas of research, including economics, social sciences and epidemiology. In observational studies in particular, the treatment receipt mechanism is typically not under the control of the investigator; it can depend on various factors, including the outcome of interest. This results in differential selection into treatment levels, and can lead to selection bias when standard routines such as least squares regression are used to estimate causal effects. Interestingly, both the characterization of and methodology for handling selection bias can differ substantially by disciplinary tradition. In social sciences and economics, instrumental variables (IV) is the standard method for estimating linear and nonlinear models in which the error term may be correlated with an observed covariate. When such correlation is not ruled out, the covariate is called endogenous and least squares estimates of the covariate effect are typically biased. The availability of an instrumental variable can be used to reduce or eliminate the bias. In public health and clinical medicine (e.g., epidemiology and biostatistics), selection bias is typically viewed in terms of confounders, and the prevailing methods are geared toward making proper adjustments via explicit use of observed confounders (e.g., stratification, standardization). A class of methods known as inverse probability weighting (IPW) estimators, which relies on modeling selection in terms of confounders, is gaining in popularity for making such adjustments. Our objective is to review and compare IPW and IV for estimating causal treatment effects from longitudinal data, where the treatment may vary with time. We accomplish this by defining the causal estimands in terms of a linear stochastic model of potential outcomes (counterfactuals). Our comparison includes a review of terminology typically used in discussions of causal inference (e.g., confounding, endogeneity); a review of assumptions required to identify causal effects and their implications for estimation and interpretation; description of estimation via inverse weighting and instrumental variables; and a comparative analysis of data from a longitudinal cohort study of HIV-infected women. In our discussion of assumptions and estimation routines, we try to emphasize sufficient conditions needed to implement relatively standard analyses that can essentially be formulated as regression models. In that sense this review is geared toward the quantitative practitioner. The objective of the data analysis is to estimate the causal (therapeutic) effect of receiving combination antiviral therapy on longitudinal CD4 cell counts, where receipt of therapy varies with time and depends on CD4 count and other covariates. Assumptions are reviewed in context, and resulting inferences are compared. The analysis illustrates the importance of considering the existence of unmeasured confounding and of checking for ‘weak instruments.’ It also suggests that IV methodology may have a role in longitudinal cohort studies where potential instrumental variables are available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
微笑的忆枫完成签到 ,获得积分10
4秒前
胜似闲庭信步完成签到,获得积分10
5秒前
Evan完成签到 ,获得积分10
7秒前
8秒前
czh驳回了Hello应助
8秒前
grass发布了新的文献求助10
9秒前
包容的绿蕊完成签到,获得积分20
11秒前
12秒前
俏皮白云完成签到 ,获得积分10
13秒前
清茶旧友完成签到,获得积分10
15秒前
dd发布了新的文献求助10
15秒前
HighFeng_Lei发布了新的文献求助10
16秒前
16秒前
nitsuj发布了新的文献求助10
16秒前
我是老大应助木木采纳,获得10
18秒前
20秒前
乐乐应助yehata采纳,获得10
21秒前
隐形语海完成签到 ,获得积分10
22秒前
23秒前
科研通AI5应助自由梦槐采纳,获得10
24秒前
24秒前
小王同学完成签到,获得积分10
24秒前
27秒前
科研通AI5应助没有昵称采纳,获得10
28秒前
DamenS发布了新的文献求助10
30秒前
华仔应助猪猪hero采纳,获得10
31秒前
32秒前
迅速泽洋完成签到,获得积分10
33秒前
思源应助夏日的风采纳,获得10
34秒前
xiaoying发布了新的文献求助10
37秒前
科目三应助elizabeth339采纳,获得50
38秒前
40秒前
irie发布了新的文献求助10
40秒前
欧力蟹发布了新的文献求助30
40秒前
szj发布了新的文献求助10
41秒前
43秒前
迷路的含桃完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422