清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies

因果推理 工具变量 协变量 逆概率加权 计量经济学 观察研究 选择偏差 混淆 统计 生物统计学 估计员 数学 医学 流行病学 内科学
作者
Joseph W. Hogan,Tony Lancaster
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:13 (1): 17-48 被引量:129
标识
DOI:10.1191/0962280204sm351ra
摘要

Inferring causal effects from longitudinal repeated measures data has high relevance to a number of areas of research, including economics, social sciences and epidemiology. In observational studies in particular, the treatment receipt mechanism is typically not under the control of the investigator; it can depend on various factors, including the outcome of interest. This results in differential selection into treatment levels, and can lead to selection bias when standard routines such as least squares regression are used to estimate causal effects. Interestingly, both the characterization of and methodology for handling selection bias can differ substantially by disciplinary tradition. In social sciences and economics, instrumental variables (IV) is the standard method for estimating linear and nonlinear models in which the error term may be correlated with an observed covariate. When such correlation is not ruled out, the covariate is called endogenous and least squares estimates of the covariate effect are typically biased. The availability of an instrumental variable can be used to reduce or eliminate the bias. In public health and clinical medicine (e.g., epidemiology and biostatistics), selection bias is typically viewed in terms of confounders, and the prevailing methods are geared toward making proper adjustments via explicit use of observed confounders (e.g., stratification, standardization). A class of methods known as inverse probability weighting (IPW) estimators, which relies on modeling selection in terms of confounders, is gaining in popularity for making such adjustments. Our objective is to review and compare IPW and IV for estimating causal treatment effects from longitudinal data, where the treatment may vary with time. We accomplish this by defining the causal estimands in terms of a linear stochastic model of potential outcomes (counterfactuals). Our comparison includes a review of terminology typically used in discussions of causal inference (e.g., confounding, endogeneity); a review of assumptions required to identify causal effects and their implications for estimation and interpretation; description of estimation via inverse weighting and instrumental variables; and a comparative analysis of data from a longitudinal cohort study of HIV-infected women. In our discussion of assumptions and estimation routines, we try to emphasize sufficient conditions needed to implement relatively standard analyses that can essentially be formulated as regression models. In that sense this review is geared toward the quantitative practitioner. The objective of the data analysis is to estimate the causal (therapeutic) effect of receiving combination antiviral therapy on longitudinal CD4 cell counts, where receipt of therapy varies with time and depends on CD4 count and other covariates. Assumptions are reviewed in context, and resulting inferences are compared. The analysis illustrates the importance of considering the existence of unmeasured confounding and of checking for ‘weak instruments.’ It also suggests that IV methodology may have a role in longitudinal cohort studies where potential instrumental variables are available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
赧赧完成签到 ,获得积分10
41秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
shhoing应助科研通管家采纳,获得10
58秒前
1分钟前
xun完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
情怀应助过时的笙采纳,获得10
2分钟前
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
BowieHuang应助爽2222采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
Akiii_完成签到,获得积分10
3分钟前
领导范儿应助薛得豪采纳,获得10
3分钟前
研友Bn完成签到 ,获得积分10
3分钟前
时老完成签到 ,获得积分10
3分钟前
3分钟前
bjyxszd完成签到 ,获得积分10
3分钟前
薛得豪发布了新的文献求助10
3分钟前
3分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
我是笨蛋完成签到 ,获得积分10
5分钟前
科研通AI2S应助Michelle采纳,获得10
5分钟前
5分钟前
Iris发布了新的文献求助10
5分钟前
方白秋完成签到,获得积分0
5分钟前
6分钟前
Chenyol完成签到 ,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
7分钟前
lqhccww发布了新的文献求助30
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538887
求助须知:如何正确求助?哪些是违规求助? 4625884
关于积分的说明 14596983
捐赠科研通 4566626
什么是DOI,文献DOI怎么找? 2503410
邀请新用户注册赠送积分活动 1481465
关于科研通互助平台的介绍 1452916