Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies

因果推理 工具变量 协变量 逆概率加权 计量经济学 观察研究 选择偏差 混淆 统计 生物统计学 估计员 数学 医学 流行病学 内科学
作者
Joseph W. Hogan,Tony Lancaster
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:13 (1): 17-48 被引量:129
标识
DOI:10.1191/0962280204sm351ra
摘要

Inferring causal effects from longitudinal repeated measures data has high relevance to a number of areas of research, including economics, social sciences and epidemiology. In observational studies in particular, the treatment receipt mechanism is typically not under the control of the investigator; it can depend on various factors, including the outcome of interest. This results in differential selection into treatment levels, and can lead to selection bias when standard routines such as least squares regression are used to estimate causal effects. Interestingly, both the characterization of and methodology for handling selection bias can differ substantially by disciplinary tradition. In social sciences and economics, instrumental variables (IV) is the standard method for estimating linear and nonlinear models in which the error term may be correlated with an observed covariate. When such correlation is not ruled out, the covariate is called endogenous and least squares estimates of the covariate effect are typically biased. The availability of an instrumental variable can be used to reduce or eliminate the bias. In public health and clinical medicine (e.g., epidemiology and biostatistics), selection bias is typically viewed in terms of confounders, and the prevailing methods are geared toward making proper adjustments via explicit use of observed confounders (e.g., stratification, standardization). A class of methods known as inverse probability weighting (IPW) estimators, which relies on modeling selection in terms of confounders, is gaining in popularity for making such adjustments. Our objective is to review and compare IPW and IV for estimating causal treatment effects from longitudinal data, where the treatment may vary with time. We accomplish this by defining the causal estimands in terms of a linear stochastic model of potential outcomes (counterfactuals). Our comparison includes a review of terminology typically used in discussions of causal inference (e.g., confounding, endogeneity); a review of assumptions required to identify causal effects and their implications for estimation and interpretation; description of estimation via inverse weighting and instrumental variables; and a comparative analysis of data from a longitudinal cohort study of HIV-infected women. In our discussion of assumptions and estimation routines, we try to emphasize sufficient conditions needed to implement relatively standard analyses that can essentially be formulated as regression models. In that sense this review is geared toward the quantitative practitioner. The objective of the data analysis is to estimate the causal (therapeutic) effect of receiving combination antiviral therapy on longitudinal CD4 cell counts, where receipt of therapy varies with time and depends on CD4 count and other covariates. Assumptions are reviewed in context, and resulting inferences are compared. The analysis illustrates the importance of considering the existence of unmeasured confounding and of checking for ‘weak instruments.’ It also suggests that IV methodology may have a role in longitudinal cohort studies where potential instrumental variables are available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亦巧发布了新的文献求助10
刚刚
Hshi发布了新的文献求助10
1秒前
小七仔发布了新的文献求助10
1秒前
1秒前
11011发布了新的文献求助10
2秒前
研友_Z60NmL发布了新的文献求助30
2秒前
sanben完成签到,获得积分10
2秒前
天天快乐应助chenxin7271采纳,获得10
3秒前
tenure发布了新的文献求助10
3秒前
初遇之时最暖完成签到,获得积分10
3秒前
可爱的函函应助资紫丝采纳,获得50
3秒前
4秒前
李爱国应助天天采纳,获得10
4秒前
5秒前
5秒前
czt发布了新的文献求助10
5秒前
5秒前
SciGPT应助濮阳思远采纳,获得10
5秒前
研友_VZG7GZ应助雪巧采纳,获得10
6秒前
Seven发布了新的文献求助20
7秒前
MQ&FF发布了新的文献求助10
7秒前
飘逸晓山发布了新的文献求助10
7秒前
mojomars发布了新的文献求助10
7秒前
JZ2021发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
搜集达人应助小七仔采纳,获得10
11秒前
11秒前
12秒前
12秒前
今麦郎完成签到,获得积分10
12秒前
子车茗应助曾经的妍采纳,获得10
13秒前
13秒前
WCX完成签到,获得积分10
13秒前
亦巧完成签到,获得积分20
13秒前
yufanhui应助每天都要开心采纳,获得10
13秒前
Flora发布了新的文献求助30
14秒前
晨澜完成签到,获得积分10
14秒前
Jasper应助彩色橘子采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123951
求助须知:如何正确求助?哪些是违规求助? 2774359
关于积分的说明 7722160
捐赠科研通 2429940
什么是DOI,文献DOI怎么找? 1290751
科研通“疑难数据库(出版商)”最低求助积分说明 621911
版权声明 600283