Principle and perspectives of hydrogen production through biocatalyzed electrolysis

电解 阳极 制氢 阴极 化学 微生物电解槽 电解法 电解水 材料科学 电解质 无机化学 化学工程 有机化学 电极 物理化学 工程类
作者
René A. Rozendal,Hubertus V.M. Hamelers,Gert-Jan Euverink,Sybrand J. Metz,Cees J.N. Buisman
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:31 (12): 1632-1640 被引量:598
标识
DOI:10.1016/j.ijhydene.2005.12.006
摘要

Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved conversion reactions can be converted with this technology. Biocatalyzed electrolysis achieves this by utilizing electrochemically active micro-organisms that are capable of generating electrical current from the oxidation of organic matter. When this biological anode is coupled to a proton reducing cathode by means of a power supply, hydrogen is generated. In the biocatalyzed electrolysis experiments presented in this article acetate is used as a model compound. In theory, biocatalyzed electrolysis of acetate requires applied voltages that can be as low as 0.14 V, while hydrogen production by means of conventional water electrolysis, in practice, requires applied voltages well above 1.6 V. At an applied voltage of 0.5 V the biocatalyzed electrolysis setup used in this study, produces approximately 0.02 m 3 H 2 / m 3 reactor liquid volume/day from acetate at an overall efficiency of 53 ± 3.5 % . This performance was mainly limited by the current design of the system, diffusional loss of hydrogen from the cathode to the anode chamber and high overpotentials associated with the cathode reaction. In this article we show that optimization of the process will allow future volumetric hydrogen production rates above 10 m 3 H 2 / m 3 reactor liquid volume/day at overall efficiencies exceeding 90% and applied voltages as low as 0.3–0.4 V. In the future, this will make biocatalyzed electrolysis an attractive technology for hydrogen production from a wide variety of wastewaters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
HHM完成签到,获得积分10
2秒前
酒仙发布了新的文献求助10
2秒前
2秒前
wodel完成签到,获得积分10
2秒前
ruby发布了新的文献求助10
3秒前
马吉克wang完成签到,获得积分10
3秒前
蹦跶发布了新的文献求助10
3秒前
劲秉应助jmy采纳,获得10
3秒前
3秒前
一念春风完成签到,获得积分10
4秒前
无花果应助xdf采纳,获得10
4秒前
5秒前
5秒前
灰太狼养的小灰灰完成签到,获得积分10
5秒前
海鲜发布了新的文献求助10
5秒前
无敌医学生完成签到,获得积分10
6秒前
李健应助彩虹云朵采纳,获得10
6秒前
6秒前
打打应助俭朴的听寒采纳,获得10
7秒前
博利发布了新的文献求助10
7秒前
8秒前
小王发布了新的文献求助10
8秒前
续续完成签到,获得积分10
8秒前
fanch1122完成签到 ,获得积分10
8秒前
8秒前
9秒前
地瓜叶完成签到,获得积分10
9秒前
情怀应助于初南采纳,获得30
9秒前
xf完成签到,获得积分10
12秒前
LL完成签到 ,获得积分10
12秒前
12秒前
晚风发布了新的文献求助15
12秒前
13秒前
新羽发布了新的文献求助10
13秒前
科目三应助wangyaner采纳,获得10
13秒前
闻风听雨发布了新的文献求助10
14秒前
juziyaya完成签到,获得积分0
14秒前
雪落发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558196
求助须知:如何正确求助?哪些是违规求助? 3133316
关于积分的说明 9401605
捐赠科研通 2833345
什么是DOI,文献DOI怎么找? 1557490
邀请新用户注册赠送积分活动 727296
科研通“疑难数据库(出版商)”最低求助积分说明 716296