泛素连接酶
葛兰素史克-3
KEAP1型
泛素
磷酸化
生物
转录因子
GSK3B公司
糖原合酶
细胞生物学
激酶
Skp1型
突变体
生物化学
分子生物学
基因
作者
Patricia Rada,Ana I. Rojo,Sudhir Chowdhry,Michael McMahon,John D. Hayes,Antonio Cuadrado
摘要
Regulation of transcription factor Nrf2 (NF-E2-related factor 2) involves redox-sensitive proteasomal degradation via the E3 ubiquitin ligase Keap1/Cul3. However, Nrf2 is controlled by other mechanisms that have not yet been elucidated. We now show that glycogen synthase kinase 3 (GSK-3) phosphorylates a group of Ser residues in the Neh6 domain of mouse Nrf2 that overlap with an SCF/β-TrCP destruction motif (DSGIS, residues 334 to 338) and promotes its degradation in a Keap1-independent manner. Nrf2 was stabilized by GSK-3 inhibitors in Keap1-null mouse embryo fibroblasts. Similarly, an Nrf2(ΔETGE) mutant, which cannot be degraded via Keap1, accumulated when GSK-3 activity was blocked. Phosphorylation of a Ser cluster in the Neh6 domain of Nrf2 stimulated its degradation because a mutant Nrf2(ΔETGE 6S/6A) protein, lacking these Ser residues, exhibited a longer half-life than Nrf2(ΔETGE). Moreover, Nrf2(ΔETGE 6S/6A) was insensitive to β-TrCP regulation and exhibited lower levels of ubiquitination than Nrf2(ΔETGE). GSK-3β enhanced ubiquitination of Nrf2(ΔETGE) but not that of Nrf2(ΔETGE 6S/6A). The Nrf2(ΔETGE) protein but not Nrf2(ΔETGE 6S/6A) coimmunoprecipitated with β-TrCP, and this association was enhanced by GSK-3β. Our results show for the first time that Nrf2 is targeted by GSK-3 for SCF/β-TrCP-dependent degradation. We propose a "dual degradation" model to describe the regulation of Nrf2 under different pathophysiological conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI