Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method for Full Quantum Mechanical Calculation of Protein Energy

化学 缩放比例 线性比例尺 从头算 微扰理论(量子力学) 量子 密度泛函理论 共轭梯度法 力场(虚构) 结合 计算化学 分子动力学 统计物理学 分子物理学 物理 量子力学 算法 数学分析 数学 几何学 大地测量学 地理
作者
Xianwei Wang,Jinfeng Liu,John Z. H. Zhang,Xiao He
出处
期刊:Journal of Physical Chemistry A [American Chemical Society]
卷期号:117 (32): 7149-7161 被引量:112
标识
DOI:10.1021/jp400779t
摘要

An electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method is developed for efficient linear-scaling quantum mechanical (QM) calculation of protein energy. This approach is based on our previously proposed GMFCC/MM method (He; et al. J. Chem. Phys. 2006, 124, 184703), In this EE-GMFCC scheme, the total energy of protein is calculated by taking a linear combination of the QM energy of the neighboring residues and the two-body QM interaction energy between non-neighboring residues that are spatially in close contact. All the fragment calculations are embedded in a field of point charges representing the remaining protein environment, which is the major improvement over our previous GMFCC/MM approach. Numerical studies are carried out to calculate the total energies of 18 real three-dimensional proteins of up to 1142 atoms using the EE-GMFCC approach at the HF/6-31G* level. The overall mean unsigned error of EE-GMFCC for the 18 proteins is 2.39 kcal/mol with reference to the full system HF/6-31G* energies. The EE-GMFCC approach is also applied for proteins at the levels of the density functional theory (DFT) and second-order many-body perturbation theory (MP2), also showing only a few kcal/mol deviation from the corresponding full system result. The EE-GMFCC method is linear-scaling with a low prefactor, trivially parallel, and can be readily applied to routinely perform structural optimization of proteins and molecular dynamics simulation with high level ab initio electronic structure theories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许win应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
贪玩手链应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
嘎嘎顺利完成签到,获得积分10
1秒前
坤坤发布了新的文献求助10
2秒前
XXF发布了新的文献求助10
2秒前
wubobo完成签到,获得积分10
2秒前
3秒前
思源应助HopeStar采纳,获得10
3秒前
4秒前
zqh完成签到,获得积分20
5秒前
5秒前
嘎嘎顺利发布了新的文献求助10
5秒前
按住心动完成签到,获得积分10
6秒前
星辰大海应助屁王采纳,获得10
6秒前
Owen应助彬彬采纳,获得10
7秒前
7秒前
Jasen完成签到,获得积分10
7秒前
轻轻地呼吸完成签到,获得积分10
7秒前
7秒前
明天更好发布了新的文献求助10
7秒前
8秒前
猪血糕yu完成签到,获得积分10
8秒前
通~发布了新的文献求助10
8秒前
9秒前
科研小垃圾完成签到,获得积分10
9秒前
10秒前
生动的煎蛋完成签到,获得积分10
10秒前
NexusExplorer应助marinemiao采纳,获得10
10秒前
CXS完成签到,获得积分10
11秒前
11秒前
11秒前
小郭完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740