A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional Data

计算机科学 聚类分析 特征选择 数据挖掘 朴素贝叶斯分类器 CURE数据聚类算法 特征(语言学) 树冠聚类算法 模式识别(心理学) 算法 相关聚类 人工智能 支持向量机 语言学 哲学
作者
Qinbao Song,Jingjie Ni,Guangtao Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 1-14 被引量:626
标识
DOI:10.1109/tkde.2011.181
摘要

Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of features. Based on these criteria, a fast clustering-based feature selection algorithm (FAST) is proposed and experimentally evaluated in this paper. The FAST algorithm works in two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the second step, the most representative feature that is strongly related to target classes is selected from each cluster to form a subset of features. Features in different clusters are relatively independent, the clustering-based strategy of FAST has a high probability of producing a subset of useful and independent features. To ensure the efficiency of FAST, we adopt the efficient minimum-spanning tree (MST) clustering method. The efficiency and effectiveness of the FAST algorithm are evaluated through an empirical study. Extensive experiments are carried out to compare FAST and several representative feature selection algorithms, namely, FCBF, ReliefF, CFS, Consist, and FOCUS-SF, with respect to four types of well-known classifiers, namely, the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER before and after feature selection. The results, on 35 publicly available real-world high-dimensional image, microarray, and text data, demonstrate that the FAST not only produces smaller subsets of features but also improves the performances of the four types of classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓布利多发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
caiia发布了新的文献求助10
2秒前
杨军发布了新的文献求助30
2秒前
HHW发布了新的文献求助10
4秒前
三岁半完成签到,获得积分10
8秒前
眼睛大书兰完成签到,获得积分20
9秒前
xiaowang发布了新的文献求助10
10秒前
10秒前
11秒前
上好佳完成签到,获得积分10
12秒前
12秒前
13秒前
李健应助眼睛大书兰采纳,获得30
13秒前
小二郎应助文艺的清炎采纳,获得10
14秒前
xinghui应助gcy采纳,获得10
14秒前
可鹿丽完成签到,获得积分10
15秒前
ElviraHuang发布了新的文献求助10
15秒前
Lyra发布了新的文献求助10
16秒前
上官若男应助辞树采纳,获得10
16秒前
16秒前
17秒前
18秒前
19秒前
19秒前
Soda8513发布了新的文献求助10
20秒前
21秒前
21秒前
科研通AI6应助优雅友菱采纳,获得10
21秒前
21秒前
SJJ应助xiaowang采纳,获得30
21秒前
晚湖发布了新的文献求助10
22秒前
jack_kunn发布了新的文献求助10
22秒前
23秒前
轶Y发布了新的文献求助10
23秒前
23秒前
涂文波完成签到,获得积分10
23秒前
温柔柜子发布了新的文献求助10
24秒前
qqaeao发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646