亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional Data

计算机科学 聚类分析 特征选择 数据挖掘 朴素贝叶斯分类器 CURE数据聚类算法 特征(语言学) 树冠聚类算法 模式识别(心理学) 算法 相关聚类 人工智能 支持向量机 语言学 哲学
作者
Qinbao Song,Jingjie Ni,Guangtao Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 1-14 被引量:626
标识
DOI:10.1109/tkde.2011.181
摘要

Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of features. Based on these criteria, a fast clustering-based feature selection algorithm (FAST) is proposed and experimentally evaluated in this paper. The FAST algorithm works in two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the second step, the most representative feature that is strongly related to target classes is selected from each cluster to form a subset of features. Features in different clusters are relatively independent, the clustering-based strategy of FAST has a high probability of producing a subset of useful and independent features. To ensure the efficiency of FAST, we adopt the efficient minimum-spanning tree (MST) clustering method. The efficiency and effectiveness of the FAST algorithm are evaluated through an empirical study. Extensive experiments are carried out to compare FAST and several representative feature selection algorithms, namely, FCBF, ReliefF, CFS, Consist, and FOCUS-SF, with respect to four types of well-known classifiers, namely, the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER before and after feature selection. The results, on 35 publicly available real-world high-dimensional image, microarray, and text data, demonstrate that the FAST not only produces smaller subsets of features but also improves the performances of the four types of classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助呜呼采纳,获得10
5秒前
动人的惜文完成签到,获得积分10
28秒前
李健应助平淡满天采纳,获得10
39秒前
小白t73完成签到 ,获得积分10
49秒前
49秒前
西柚柠檬完成签到 ,获得积分10
58秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
平淡满天完成签到,获得积分20
1分钟前
1分钟前
平淡满天发布了新的文献求助10
1分钟前
科研通AI6.1应助转转采纳,获得10
1分钟前
科研通AI2S应助jami-yu采纳,获得10
1分钟前
1分钟前
转转发布了新的文献求助10
1分钟前
公茂源完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
Imran完成签到,获得积分10
3分钟前
爱思考的小笨笨完成签到,获得积分10
3分钟前
梅子黄时雨完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
科研通AI6.1应助993494543采纳,获得10
4分钟前
4分钟前
优美的莹芝完成签到,获得积分10
4分钟前
科研通AI2S应助信陵君无忌采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134