亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional Data

计算机科学 聚类分析 特征选择 数据挖掘 朴素贝叶斯分类器 CURE数据聚类算法 特征(语言学) 树冠聚类算法 模式识别(心理学) 算法 相关聚类 人工智能 支持向量机 语言学 哲学
作者
Qinbao Song,Jingjie Ni,Guangtao Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 1-14 被引量:626
标识
DOI:10.1109/tkde.2011.181
摘要

Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of features. Based on these criteria, a fast clustering-based feature selection algorithm (FAST) is proposed and experimentally evaluated in this paper. The FAST algorithm works in two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the second step, the most representative feature that is strongly related to target classes is selected from each cluster to form a subset of features. Features in different clusters are relatively independent, the clustering-based strategy of FAST has a high probability of producing a subset of useful and independent features. To ensure the efficiency of FAST, we adopt the efficient minimum-spanning tree (MST) clustering method. The efficiency and effectiveness of the FAST algorithm are evaluated through an empirical study. Extensive experiments are carried out to compare FAST and several representative feature selection algorithms, namely, FCBF, ReliefF, CFS, Consist, and FOCUS-SF, with respect to four types of well-known classifiers, namely, the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER before and after feature selection. The results, on 35 publicly available real-world high-dimensional image, microarray, and text data, demonstrate that the FAST not only produces smaller subsets of features but also improves the performances of the four types of classifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨的发布了新的文献求助10
16秒前
petrichor完成签到,获得积分10
20秒前
21秒前
30秒前
打打应助笨笨的采纳,获得10
31秒前
uss发布了新的文献求助200
34秒前
37秒前
lauchan54发布了新的文献求助10
41秒前
万能图书馆应助Pattis采纳,获得10
42秒前
treat4869完成签到 ,获得积分10
49秒前
53秒前
笨笨的发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
hhq完成签到 ,获得积分10
1分钟前
guo完成签到,获得积分10
1分钟前
orixero应助笨笨的采纳,获得10
1分钟前
1分钟前
净净完成签到,获得积分20
2分钟前
畅快的白枫完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
今天又来搬砖啦完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
笨笨的发布了新的文献求助10
3分钟前
净净发布了新的文献求助10
3分钟前
3分钟前
4分钟前
笨笨的发布了新的文献求助30
4分钟前
zhaoty完成签到,获得积分10
4分钟前
4分钟前
5分钟前
阿俊完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
5分钟前
cy0824完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538762
求助须知:如何正确求助?哪些是违规求助? 4625805
关于积分的说明 14596909
捐赠科研通 4566499
什么是DOI,文献DOI怎么找? 2503319
邀请新用户注册赠送积分活动 1481410
关于科研通互助平台的介绍 1452789