已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional Data

计算机科学 聚类分析 特征选择 数据挖掘 朴素贝叶斯分类器 CURE数据聚类算法 特征(语言学) 树冠聚类算法 模式识别(心理学) 算法 相关聚类 人工智能 支持向量机 语言学 哲学
作者
Qinbao Song,Jingjie Ni,Guangtao Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 1-14 被引量:626
标识
DOI:10.1109/tkde.2011.181
摘要

Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of features. Based on these criteria, a fast clustering-based feature selection algorithm (FAST) is proposed and experimentally evaluated in this paper. The FAST algorithm works in two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the second step, the most representative feature that is strongly related to target classes is selected from each cluster to form a subset of features. Features in different clusters are relatively independent, the clustering-based strategy of FAST has a high probability of producing a subset of useful and independent features. To ensure the efficiency of FAST, we adopt the efficient minimum-spanning tree (MST) clustering method. The efficiency and effectiveness of the FAST algorithm are evaluated through an empirical study. Extensive experiments are carried out to compare FAST and several representative feature selection algorithms, namely, FCBF, ReliefF, CFS, Consist, and FOCUS-SF, with respect to four types of well-known classifiers, namely, the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER before and after feature selection. The results, on 35 publicly available real-world high-dimensional image, microarray, and text data, demonstrate that the FAST not only produces smaller subsets of features but also improves the performances of the four types of classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TiancHUA关注了科研通微信公众号
1秒前
2秒前
just发布了新的文献求助10
2秒前
3秒前
3秒前
lucky狗蛋发布了新的文献求助10
4秒前
matteo发布了新的文献求助10
7秒前
7秒前
8秒前
林夕发布了新的文献求助10
8秒前
9秒前
9秒前
CipherSage应助年轻冥茗采纳,获得10
11秒前
monster完成签到,获得积分10
12秒前
孤蚀月发布了新的文献求助10
12秒前
田様应助lucky狗蛋采纳,获得10
15秒前
15秒前
15秒前
17秒前
17秒前
17秒前
zhou完成签到,获得积分20
19秒前
蓝秋完成签到,获得积分10
19秒前
19秒前
命运发布了新的文献求助20
19秒前
tianshicanyi发布了新的文献求助10
20秒前
可爱的函函应助林夕采纳,获得10
20秒前
lizeyu发布了新的文献求助10
21秒前
zhou发布了新的文献求助30
22秒前
钟山发布了新的文献求助10
23秒前
传奇3应助淮安彦祖采纳,获得10
24秒前
guo完成签到,获得积分10
24秒前
Keymo完成签到,获得积分20
25秒前
25秒前
医研丁真完成签到 ,获得积分10
26秒前
LRxxx发布了新的文献求助10
27秒前
matteo发布了新的文献求助10
29秒前
30秒前
云染完成签到 ,获得积分10
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125756
求助须知:如何正确求助?哪些是违规求助? 2776061
关于积分的说明 7729059
捐赠科研通 2431519
什么是DOI,文献DOI怎么找? 1292114
科研通“疑难数据库(出版商)”最低求助积分说明 622387
版权声明 600380