数学
估计员
加速失效时间模型
单调多边形
秩(图论)
重采样
协方差
非参数统计
应用数学
渐近分布
推论
统计
计算机科学
组合数学
协变量
人工智能
几何学
作者
Zhezhen Jin,D. Y. Lin,L. J. Wei,Zhiliang Ying
出处
期刊:Biometrika
[Oxford University Press]
日期:2003-06-01
卷期号:90 (2): 341-353
被引量:385
标识
DOI:10.1093/biomet/90.2.341
摘要
A broad class of rank‐based monotone estimating functions is developed for the semiparametric accelerated failure time model with censored observations. The corresponding estimators can be obtained via linear programming, and are shown to be consistent and asymptotically normal. The limiting covariance matrices can be estimated by a resampling technique, which does not involve nonparametric density estimation or numerical derivatives. The new estimators represent consistent roots of the non‐monotone estimating equations based on the familiar weighted log‐rank statistics. Simulation studies demonstrate that the proposed methods perform well in practical settings. Two real examples are provided.
科研通智能强力驱动
Strongly Powered by AbleSci AI