条件随机场
最大熵马尔可夫模型
图形模型
条件熵
条件独立性
判别式
变阶马尔可夫模型
计算机科学
概率逻辑
随机场
隐马尔可夫模型
马尔可夫模型
马尔可夫链
人工智能
马尔可夫随机场
条件概率
最大熵原理
数学
机器学习
统计
分割
图像分割
作者
John Lafferty,Alan Yuille,Fernando C. N. Pereira
出处
期刊:International Conference on Machine Learning
日期:2001-06-28
卷期号:: 282-289
被引量:8675
摘要
We present conditional random fields , a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid a fundamental limitation of maximum entropy Markov models (MEMMs) and other discriminative Markov models based on directed graphical models, which can be biased towards states with few successor states. We present iterative parameter estimation algorithms for conditional random fields and compare the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data.
科研通智能强力驱动
Strongly Powered by AbleSci AI