介孔二氧化硅
偶氮苯
材料科学
介孔材料
生物相容性
纳米技术
控制释放
化学
有机化学
催化作用
聚合物
复合材料
冶金
作者
Quan Yuan,Yunfei Zhang,Tao Chen,Danqing Lu,Zilong Zhao,Xiaobing Zhang,Zhenxing Liu,Chun‐Hua Yan,Weihong Tan
出处
期刊:ACS Nano
[American Chemical Society]
日期:2012-06-18
卷期号:6 (7): 6337-6344
被引量:228
摘要
Herein a photon-manipulated mesoporous release system was constructed based on azobenzene-modified nucleic acids. In this system, the azobenzene-incorporated DNA double strands were immobilized at the pore mouth of mesoporous silica nanoparticles. The photoisomerization of azobenzene induced dehybridization/hybridization switch of complementary DNA, causing uncapping/capping of pore gates of mesoporous silica. This nanoplatform permits holding of guest molecules within the nanopores under visible light but releases them when light wavelength turns to the UV range. These DNA/mesoporous silica hybrid nanostructures were exploited as carriers for the cancer cell chemotherapy drug doxorubicin (DOX) due to its stimuli-responsive property as well as good biocompatibility via MTT assay. It is found that the drug release behavior is light-wavelength-sensitive. Switching of the light from visible to the UV range uncapped the pores, causing the release of DOX from the mesoporous silica nanospheres and an obvious cytotoxic effect on cancer cells. We envision that this photocontrolled drug release system could find potential applications in cancer therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI