Biofabricated soft network composites for cartilage tissue engineering

材料科学 粘弹性 软骨 复合材料 聚己内酯 自愈水凝胶 组织工程 生物医学工程 静电纺丝 软骨细胞 有限元法 软组织 聚合物 结构工程 解剖 高分子化学 外科 医学 工程类
作者
Onur Bas,Elena M. De‐Juan‐Pardo,Christoph Meinert,Davide D’Angella,Jeremy Baldwin,Laura J. Bray,R. Mark Wellard,Stefan Kollmannsberger,E. Rank,Carsten Werner,Travis J. Klein,Isabelle Catelas,Dietmar W. Hutmacher
出处
期刊:Biofabrication [IOP Publishing]
卷期号:9 (2): 025014-025014 被引量:141
标识
DOI:10.1088/1758-5090/aa6b15
摘要

Articular cartilage from a material science point of view is a soft network composite that plays a critical role in load-bearing joints during dynamic loading. Its composite structure, consisting of a collagen fiber network and a hydrated proteoglycan matrix, gives rise to the complex mechanical properties of the tissue including viscoelasticity and stress relaxation. Melt electrospinning writing allows the design and fabrication of medical grade polycaprolactone (mPCL) fibrous networks for the reinforcement of soft hydrogel matrices for cartilage tissue engineering. However, these fiber-reinforced constructs underperformed under dynamic and prolonged loading conditions, suggesting that more targeted design approaches and material selection are required to fully exploit the potential of fibers as reinforcing agents for cartilage tissue engineering. In the present study, we emulated the proteoglycan matrix of articular cartilage by using highly negatively charged star-shaped poly(ethylene glycol)/heparin hydrogel (sPEG/Hep) as the soft matrix. These soft hydrogels combined with mPCL melt electrospun fibrous networks exhibited mechanical anisotropy, nonlinearity, viscoelasticity and morphology analogous to those of their native counterpart, and provided a suitable microenvironment for in vitro human chondrocyte culture and neocartilage formation. In addition, a numerical model using the p-version of the finite element method (p-FEM) was developed in order to gain further insights into the deformation mechanisms of the constructs in silico, as well as to predict compressive moduli. To our knowledge, this is the first study presenting cartilage tissue-engineered constructs that capture the overall transient, equilibrium and dynamic biomechanical properties of human articular cartilage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8QyXr8发布了新的文献求助10
1秒前
1秒前
1秒前
橘栀发布了新的文献求助30
3秒前
二月完成签到,获得积分10
3秒前
勤奋天真完成签到 ,获得积分10
3秒前
科研通AI6.1应助Mianiu采纳,获得10
4秒前
5秒前
丘比特应助杨小鸿采纳,获得10
6秒前
CuO完成签到 ,获得积分10
6秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
ww完成签到,获得积分10
9秒前
甜甜谷波发布了新的文献求助10
10秒前
火乐发布了新的文献求助30
11秒前
demo完成签到,获得积分10
12秒前
橘栀完成签到,获得积分10
12秒前
14秒前
Owen应助难过的谷芹采纳,获得10
15秒前
15秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
池洲应助科研通管家采纳,获得10
16秒前
17秒前
华仔应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
危机的阁应助科研通管家采纳,获得30
17秒前
子昂应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
池洲应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
危机的阁应助科研通管家采纳,获得30
18秒前
18秒前
子昂应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044