3D printing of novel osteochondral scaffolds with graded microstructure

材料科学 脚手架 3D生物打印 熔模铸造 生物医学工程 软骨发生 熔融沉积模型 3D打印 组织工程 间充质干细胞 软骨 复合材料 解剖 细胞生物学 生物 医学 模具
作者
Margaret Nowicki,Nathan J. Castro,Michael W. Plesniak,Lijie Grace Zhang
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:27 (41): 414001-414001 被引量:63
标识
DOI:10.1088/0957-4484/27/41/414001
摘要

Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气如波完成签到 ,获得积分10
1秒前
潇洒十三发布了新的文献求助10
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
司徒文青应助科研通管家采纳,获得30
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
闪闪的凡桃完成签到,获得积分20
2秒前
Ava应助科研通管家采纳,获得10
2秒前
卤蛋蛋_li发布了新的文献求助10
2秒前
柠小檬c发布了新的文献求助10
2秒前
2秒前
劲秉应助nenoaowu采纳,获得30
2秒前
3秒前
嘿嘿发布了新的文献求助10
4秒前
JamesPei应助lizzzzzz采纳,获得10
5秒前
无花果应助郑总采纳,获得10
5秒前
哼哼发布了新的文献求助10
5秒前
觅子君发布了新的文献求助10
6秒前
6秒前
负责御姐完成签到,获得积分10
7秒前
dc完成签到,获得积分10
7秒前
坚强香旋发布了新的文献求助10
8秒前
大力沛萍发布了新的文献求助10
8秒前
Carol发布了新的文献求助10
9秒前
彩色小凡完成签到 ,获得积分10
9秒前
11秒前
大模型应助嗨JL采纳,获得10
11秒前
11秒前
Ava应助桃子采纳,获得10
12秒前
12秒前
认真的沛容完成签到 ,获得积分10
12秒前
12秒前
汉堡包应助香辣鸡腿堡采纳,获得10
14秒前
未了发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458644
求助须知:如何正确求助?哪些是违规求助? 3053442
关于积分的说明 9036584
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504484
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694494