A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models

生成语法 连接(主束) 对抗制 强化学习 计算机科学 反向 人工智能 生成对抗网络 机器学习 数学 深度学习 几何学
作者
Chelsea Finn,Paul F. Christiano,Pieter Abbeel,Sergey Levine
出处
期刊:Cornell University - arXiv 被引量:214
标识
DOI:10.48550/arxiv.1611.03852
摘要

Generative adversarial networks (GANs) are a recently proposed class of generative models in which a generator is trained to optimize a cost function that is being simultaneously learned by a discriminator. While the idea of learning cost functions is relatively new to the field of generative modeling, learning costs has long been studied in control and reinforcement learning (RL) domains, typically for imitation learning from demonstrations. In these fields, learning cost function underlying observed behavior is known as inverse reinforcement learning (IRL) or inverse optimal control. While at first the connection between cost learning in RL and cost learning in generative modeling may appear to be a superficial one, we show in this paper that certain IRL methods are in fact mathematically equivalent to GANs. In particular, we demonstrate an equivalence between a sample-based algorithm for maximum entropy IRL and a GAN in which the generator's density can be evaluated and is provided as an additional input to the discriminator. Interestingly, maximum entropy IRL is a special case of an energy-based model. We discuss the interpretation of GANs as an algorithm for training energy-based models, and relate this interpretation to other recent work that seeks to connect GANs and EBMs. By formally highlighting the connection between GANs, IRL, and EBMs, we hope that researchers in all three communities can better identify and apply transferable ideas from one domain to another, particularly for developing more stable and scalable algorithms: a major challenge in all three domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
berrycute完成签到,获得积分20
1秒前
齐天大圣应助落寞寒荷采纳,获得30
1秒前
竹音完成签到,获得积分10
4秒前
研友_VZG7GZ应助多情的初蓝采纳,获得10
5秒前
silence完成签到,获得积分10
7秒前
积极松鼠完成签到,获得积分10
7秒前
汤浩宏完成签到,获得积分10
10秒前
雷培发布了新的文献求助10
13秒前
heyaoe发布了新的文献求助10
15秒前
蜗牛先生发布了新的文献求助20
16秒前
CodeCraft应助aderwe采纳,获得10
16秒前
落寞寒荷完成签到,获得积分10
17秒前
浩二完成签到,获得积分10
17秒前
小熊熊完成签到,获得积分10
18秒前
一半一半完成签到 ,获得积分10
18秒前
19秒前
21秒前
24秒前
光亮归尘完成签到,获得积分10
24秒前
共享精神应助LJL采纳,获得10
25秒前
SciGPT应助长孙烙采纳,获得10
25秒前
上官若男应助Yatpome采纳,获得10
25秒前
jf完成签到 ,获得积分10
26秒前
酷波er应助wangjingni采纳,获得10
26秒前
29秒前
所所应助光亮归尘采纳,获得10
29秒前
臧为完成签到 ,获得积分10
31秒前
prime发布了新的文献求助10
33秒前
丘比特应助科研通管家采纳,获得20
33秒前
科研通AI2S应助科研通管家采纳,获得30
33秒前
坚强的凝荷完成签到,获得积分10
33秒前
慕青应助科研通管家采纳,获得10
33秒前
33秒前
fanyueyue应助科研通管家采纳,获得10
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
SYLH应助科研通管家采纳,获得10
33秒前
SYLH应助科研通管家采纳,获得10
33秒前
上官若男应助科研通管家采纳,获得10
33秒前
研友_VZG7GZ应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982