A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models

生成语法 连接(主束) 对抗制 强化学习 计算机科学 反向 人工智能 生成对抗网络 机器学习 数学 深度学习 几何学
作者
Chelsea Finn,Paul F. Christiano,Pieter Abbeel,Sergey Levine
出处
期刊:Cornell University - arXiv 被引量:214
标识
DOI:10.48550/arxiv.1611.03852
摘要

Generative adversarial networks (GANs) are a recently proposed class of generative models in which a generator is trained to optimize a cost function that is being simultaneously learned by a discriminator. While the idea of learning cost functions is relatively new to the field of generative modeling, learning costs has long been studied in control and reinforcement learning (RL) domains, typically for imitation learning from demonstrations. In these fields, learning cost function underlying observed behavior is known as inverse reinforcement learning (IRL) or inverse optimal control. While at first the connection between cost learning in RL and cost learning in generative modeling may appear to be a superficial one, we show in this paper that certain IRL methods are in fact mathematically equivalent to GANs. In particular, we demonstrate an equivalence between a sample-based algorithm for maximum entropy IRL and a GAN in which the generator's density can be evaluated and is provided as an additional input to the discriminator. Interestingly, maximum entropy IRL is a special case of an energy-based model. We discuss the interpretation of GANs as an algorithm for training energy-based models, and relate this interpretation to other recent work that seeks to connect GANs and EBMs. By formally highlighting the connection between GANs, IRL, and EBMs, we hope that researchers in all three communities can better identify and apply transferable ideas from one domain to another, particularly for developing more stable and scalable algorithms: a major challenge in all three domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实的菓完成签到 ,获得积分10
1秒前
似水流年完成签到,获得积分10
1秒前
An慧完成签到,获得积分10
1秒前
Hello应助阿金采纳,获得10
1秒前
1秒前
1秒前
3秒前
顾夏包完成签到,获得积分10
3秒前
小土豆发布了新的文献求助50
4秒前
科研通AI5应助跑在颖采纳,获得10
4秒前
追寻代真发布了新的文献求助10
5秒前
mrmrer完成签到,获得积分20
5秒前
5秒前
5秒前
毛慢慢发布了新的文献求助10
6秒前
6秒前
今天不学习明天变垃圾完成签到,获得积分10
6秒前
7秒前
7秒前
布布完成签到,获得积分10
8秒前
一独白发布了新的文献求助10
8秒前
周周完成签到 ,获得积分10
8秒前
淡然完成签到,获得积分10
9秒前
明理小土豆完成签到,获得积分10
9秒前
刘国建郭菱香完成签到,获得积分10
9秒前
嘤嘤嘤完成签到,获得积分10
9秒前
九川应助粱自中采纳,获得10
9秒前
无辜之卉完成签到,获得积分10
10秒前
无花果应助Island采纳,获得10
10秒前
10秒前
SHDeathlock发布了新的文献求助200
11秒前
Owen应助醒醒采纳,获得10
11秒前
无心的代桃完成签到,获得积分10
12秒前
追寻代真完成签到,获得积分10
12秒前
晓兴兴完成签到,获得积分10
12秒前
leon发布了新的文献求助10
13秒前
洽洽瓜子shine完成签到,获得积分10
13秒前
简单的大白菜真实的钥匙完成签到,获得积分10
14秒前
15秒前
一独白完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762