控制理论(社会学)
约束(计算机辅助设计)
李雅普诺夫函数
有界函数
控制器(灌溉)
数学
Lyapunov重新设计
功能(生物学)
自适应控制
国家(计算机科学)
计算机科学
控制(管理)
非线性系统
数学分析
算法
物理
人工智能
量子力学
生物
进化生物学
几何学
农学
作者
Bojun Liu,Mingshan Hou,Junkang Ni,Yajun Li,Zhonghua Wu
标识
DOI:10.1016/j.jfranklin.2020.07.037
摘要
This paper investigates the neural adaptive tracking control problem of a class of strict-feedback systems considering asymmetric full-state with input magnitude and rate constraint (MRC). By designing a dual-integral-type actual control law, the MRC on system input is transformed to be the magnitude limitations on the extended states of the original system, so the original system with both state and MRC considerations is converted to be a new system with only full-state constraint. Besides, compared with the traditional symmetric integral barrier Lyapunov function, new asymmetric integral barrier Lyapunov function is introduced to the dynamic surface-based controller design process in this paper for dealing with the asymmetric state constraint problem. It is analyzed that the original system is semi-globally uniformly ultimately bounded, and that the desired multiple constraints are never violated. The effectiveness of the control strategy is shown via numerical simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI