已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unprecedentedly high indoor performance (efficiency > 34 %) of perovskite photovoltaics with controlled bromine doping

材料科学 钙钛矿(结构) 光伏系统 光伏 能量转换效率 光电子学 卤化物 兴奋剂 发光二极管 化学工程 无机化学 电气工程 工程类 化学
作者
Ju Won Lim,Hannah Kwon,Sang Hyeon Kim,Young‐Jun You,Ji Soo Goo,Doo-Hyun Ko,Hyun Jeong Lee,Dawoon Kim,In Jae Chung,Tae Geun Kim,Dong Ha Kim,Jae Won Shim
出处
期刊:Nano Energy [Elsevier]
卷期号:75: 104984-104984 被引量:63
标识
DOI:10.1016/j.nanoen.2020.104984
摘要

Indoor lighting-driven photovoltaic cells have significant potential for energy generation due to their ability to convert waste lighting into reusable sources and energy generation regardless of weather conditions. As a promising renewable source of energy, indoor perovskite photovoltaic cells possess the advantages of high efficiency, facile processability, and cost-effectiveness. Here, we propose stoichiometry-controlled perovskite-based photovoltaic cells illuminated under the dim light-emitting diode (LED) to capture and recycle the light sources. Among the various stoichiometric methods tested, 10% bromide-doped perovskite photoactive layers exhibit the best performance as a result of better crystallization and uniform surface. This helps to form larger grains of perovskite with reduced trap sites and defects, which suppresses carrier trapping and non-radiation recombination centers, resulting in improved device performance. Moreover, additional substitution by an appropriate halide increases the stability of the conventional perovskite by forming a pseudo-cubic phase. Consequently, the photovoltaic device examined under dim LED (1000 lx) indoor lighting exhibits an average power conversion efficiency of 34.5 ± 1.2%, which is superior by 18% compared with that of a control device (29.2 ± 1.6%). These results reveal the potential of indoor-driven perovskite photovoltaic cells as next-generation power sources which may pioneer the development of new types of indoor electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美凡双完成签到,获得积分10
刚刚
1秒前
王撑撑发布了新的文献求助10
3秒前
sissiarno应助七七和花花采纳,获得30
8秒前
zmxssg008完成签到,获得积分10
9秒前
Kashing完成签到,获得积分10
10秒前
FashionBoy应助无私巧荷采纳,获得10
12秒前
大意的茈完成签到,获得积分10
12秒前
香蕉觅云应助研友_ZbP41L采纳,获得10
13秒前
爱你沛沛完成签到 ,获得积分10
17秒前
vans如意完成签到 ,获得积分10
17秒前
18秒前
甜甜甜完成签到 ,获得积分10
19秒前
天天快乐应助nana采纳,获得10
23秒前
昏睡的凯完成签到,获得积分20
23秒前
研友_ZbP41L发布了新的文献求助10
24秒前
27秒前
Easypass完成签到 ,获得积分10
29秒前
liuhy发布了新的文献求助10
30秒前
称心的以柳完成签到,获得积分10
30秒前
Tim完成签到 ,获得积分10
31秒前
32秒前
画船听雨眠完成签到 ,获得积分10
33秒前
bjyx完成签到,获得积分10
34秒前
老马哥完成签到,获得积分0
35秒前
研友_ZbP41L完成签到,获得积分10
35秒前
活力的小猫咪完成签到 ,获得积分10
36秒前
小巧南琴发布了新的文献求助10
36秒前
36秒前
芥菜种子完成签到 ,获得积分10
37秒前
38秒前
Benjamin完成签到 ,获得积分10
39秒前
41秒前
小巧南琴完成签到,获得积分10
45秒前
47秒前
李爱国应助xuan采纳,获得10
49秒前
53秒前
沉静方盒完成签到,获得积分10
55秒前
xuan发布了新的文献求助10
57秒前
lhl完成签到,获得积分10
59秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307213
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499788
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382