过度拟合
过采样
精神分裂症(面向对象编程)
计算机科学
欠采样
人工智能
召回
特征选择
重采样
随机对照试验
机器学习
特征(语言学)
医学
心理学
认知心理学
外科
哲学
计算机网络
程序设计语言
带宽(计算)
人工神经网络
语言学
作者
Rui Wang,Weichen Wang,Mikio Obuchi,Emily A. Scherer,Rachel Brian,Dror Ben‐Zeev,Tanzeem Choudhury,John M. Kane,Martar Hauser,Megan Walsh,Andrew T. Campbell
标识
DOI:10.1109/percom45495.2020.9127365
摘要
Schizophrenia is a severe psychiatric disorder. We use the CrossCheck study dataset to develop methods to predict whether or not a patient with schizophrenia is going to relapse from mobile phone data. Out of 75 patients in the year long randomized controlled trial only 27 relapse episodes occur. We apply various techniques to address predicting rare events in a longitudinal dataset. We apply resampling methods combining oversampling relapse examples and undersampling non-relapse examples and impute missing data. To avoid overfitting, we apply feature selection and transformation (i.e., PCA) to reduce the feature dimensionality. We find the best relapse prediction result using the first 100 principal components from both passive sensing and self-reports with 30-day prediction windows (precision=26.8%, recall=28.4%). If we demand the recall to be greater than 50%, we find the best result using 25 principle components from both passive sensing and self-reports with 30-day prediction windows (precision=15.4%, recall=51.6%).
科研通智能强力驱动
Strongly Powered by AbleSci AI