数学
随机微分方程
单调函数
李普希茨连续性
应用数学
班级(哲学)
数学分析
分布(数学)
微分方程
计算机科学
人工智能
作者
Boualem Djehiche,Romuald Élie,Saïd Hamadène
摘要
In this paper, we study a class of reflected backward stochastic differential equations (BSDEs) of mean-field type, where the mean-field interaction in terms of the distribution of the Y-component of the solution enters in both the driver and the lower obstacle. We consider in details the case where the lower obstacle is a deterministic function of (Y,E[Y]) and discuss the more general dependence on the distribution of Y. Under mild Lipschitz and integrability conditions on the coefficients, we obtain the well-posedness of such a class of equations. Under further monotonicity conditions, we show convergence of the standard penalization scheme to the solution of the equation, which hence satisfies a minimality property. This class of equations is motivated by applications in pricing life insurance contracts with surrender options.
科研通智能强力驱动
Strongly Powered by AbleSci AI