Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames

烟灰 体积分数 材料科学 燃烧 扩散火焰 绝热火焰温度 热力学 计算机科学 生物系统 分析化学(期刊) 光学 物理 化学 有机化学 燃烧室 生物
作者
Tao Ren,Ya Zhou,Qianlong Wang,Haifeng Liu,Zhen Li,Changying Zhao
出处
期刊:Optics Express [The Optical Society]
卷期号:29 (2): 1678-1678 被引量:25
标识
DOI:10.1364/oe.413100
摘要

Inferring local soot temperature and volume fraction distributions from radiation emission measurements of sooting flames may involve solving nonlinear, ill-posed and high-dimensional problems, which are typically conducted by solving ill-posed problems with big matrices with regularization methods. Due to the high data throughput, they are usually inefficient and tedious. Machine learning approaches allow solving such problems, offering an alternative way to deal with complex and dynamic systems with good flexibility. In this study, we present an original and efficient machine learning approach for retrieving soot temperature and volume fraction fields simultaneously from single-color near-infrared emission measurements of dilute ethylene diffusion flames. The machine learning model gathers information from existing data and builds connections between combustion scalars (soot temperature and volume fraction) and emission measurements of flames. Numerical studies were conducted first to show the feasibility and robustness of the method. The experimental Multi-Layer Perceptron (MLP) neural network model was fostered and validated by the N 2 diluted ethylene diffusion flames. Furthermore, the model capability tests were carried out as well for CO 2 diluted ethylene diffusion flames. Eventually, the model performance subjected to the Modulated Absorption/Emission (MAE) technique measurement uncertainties were detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzk发布了新的文献求助10
刚刚
橙子发布了新的文献求助10
刚刚
刚刚
Akim应助圈圈采纳,获得10
1秒前
zy发布了新的文献求助10
1秒前
仇悦完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
FashionBoy应助kkx采纳,获得10
4秒前
尘埃完成签到,获得积分10
4秒前
5秒前
prj完成签到,获得积分10
5秒前
曹鑫宇发布了新的文献求助10
5秒前
Stella应助安静秋柔采纳,获得30
6秒前
Starain完成签到,获得积分10
6秒前
Lucas应助清脆如娆采纳,获得10
6秒前
wkh完成签到,获得积分10
6秒前
甜蜜绿柏完成签到,获得积分10
7秒前
华仔应助赵芳采纳,获得30
7秒前
充电宝应助火星上的宝马采纳,获得10
7秒前
饱满凝雁完成签到 ,获得积分10
7秒前
8秒前
Free发布了新的文献求助10
8秒前
科研通AI6应助幸福的依柔采纳,获得10
8秒前
8秒前
Jane发布了新的文献求助10
9秒前
prj发布了新的文献求助10
9秒前
9秒前
hhhhh1发布了新的文献求助10
9秒前
9秒前
10秒前
Trump发布了新的文献求助30
10秒前
10秒前
10秒前
QXK完成签到 ,获得积分10
11秒前
专注的傲白完成签到,获得积分20
11秒前
T723完成签到 ,获得积分10
11秒前
此生完成签到,获得积分20
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396402
求助须知:如何正确求助?哪些是违规求助? 4516808
关于积分的说明 14061325
捐赠科研通 4428678
什么是DOI,文献DOI怎么找? 2432127
邀请新用户注册赠送积分活动 1424444
关于科研通互助平台的介绍 1403588