Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames

烟灰 体积分数 材料科学 燃烧 扩散火焰 绝热火焰温度 热力学 计算机科学 生物系统 分析化学(期刊) 光学 物理 化学 有机化学 燃烧室 生物
作者
Tao Ren,Ya Zhou,Qianlong Wang,Haifeng Liu,Zhen Li,Changying Zhao
出处
期刊:Optics Express [The Optical Society]
卷期号:29 (2): 1678-1678 被引量:21
标识
DOI:10.1364/oe.413100
摘要

Inferring local soot temperature and volume fraction distributions from radiation emission measurements of sooting flames may involve solving nonlinear, ill-posed and high-dimensional problems, which are typically conducted by solving ill-posed problems with big matrices with regularization methods. Due to the high data throughput, they are usually inefficient and tedious. Machine learning approaches allow solving such problems, offering an alternative way to deal with complex and dynamic systems with good flexibility. In this study, we present an original and efficient machine learning approach for retrieving soot temperature and volume fraction fields simultaneously from single-color near-infrared emission measurements of dilute ethylene diffusion flames. The machine learning model gathers information from existing data and builds connections between combustion scalars (soot temperature and volume fraction) and emission measurements of flames. Numerical studies were conducted first to show the feasibility and robustness of the method. The experimental Multi-Layer Perceptron (MLP) neural network model was fostered and validated by the N 2 diluted ethylene diffusion flames. Furthermore, the model capability tests were carried out as well for CO 2 diluted ethylene diffusion flames. Eventually, the model performance subjected to the Modulated Absorption/Emission (MAE) technique measurement uncertainties were detailed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tender完成签到,获得积分10
1秒前
彭于晏应助科研小鱼儿采纳,获得10
1秒前
jinfu应助怡然绮彤采纳,获得10
1秒前
1秒前
领导范儿应助Susie采纳,获得10
2秒前
务实天德发布了新的文献求助10
3秒前
3秒前
义气高丽完成签到 ,获得积分10
4秒前
4秒前
Junrong应助qiqi0426采纳,获得20
4秒前
蓝胖子完成签到,获得积分10
4秒前
AOPs发布了新的文献求助10
5秒前
Ava应助现实的中蓝采纳,获得10
5秒前
5秒前
CipherSage应助朴英俊采纳,获得10
5秒前
阿尔卡利斯完成签到,获得积分10
6秒前
王yuu发布了新的文献求助30
6秒前
7秒前
淡淡的冬瓜完成签到,获得积分20
7秒前
科目三应助CCCCC采纳,获得10
8秒前
9秒前
9秒前
9秒前
10秒前
蛋堡发布了新的文献求助10
10秒前
wu发布了新的文献求助10
11秒前
11秒前
顺利研兔子完成签到,获得积分20
11秒前
Orange应助小柒采纳,获得10
11秒前
824发布了新的文献求助10
12秒前
12秒前
慕青应助杜兰特工队采纳,获得10
12秒前
12秒前
Ella完成签到,获得积分10
12秒前
13秒前
科研通AI2S应助火山采纳,获得10
14秒前
14秒前
14秒前
邱半仙发布了新的文献求助10
14秒前
moon发布了新的文献求助10
14秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228868
求助须知:如何正确求助?哪些是违规求助? 2876648
关于积分的说明 8195944
捐赠科研通 2543914
什么是DOI,文献DOI怎么找? 1374103
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621521