Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames

烟灰 体积分数 材料科学 燃烧 扩散火焰 绝热火焰温度 热力学 计算机科学 生物系统 分析化学(期刊) 光学 物理 化学 有机化学 燃烧室 生物
作者
Tao Ren,Ya Zhou,Qianlong Wang,Haifeng Liu,Zhen Li,Changying Zhao
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:29 (2): 1678-1678 被引量:21
标识
DOI:10.1364/oe.413100
摘要

Inferring local soot temperature and volume fraction distributions from radiation emission measurements of sooting flames may involve solving nonlinear, ill-posed and high-dimensional problems, which are typically conducted by solving ill-posed problems with big matrices with regularization methods. Due to the high data throughput, they are usually inefficient and tedious. Machine learning approaches allow solving such problems, offering an alternative way to deal with complex and dynamic systems with good flexibility. In this study, we present an original and efficient machine learning approach for retrieving soot temperature and volume fraction fields simultaneously from single-color near-infrared emission measurements of dilute ethylene diffusion flames. The machine learning model gathers information from existing data and builds connections between combustion scalars (soot temperature and volume fraction) and emission measurements of flames. Numerical studies were conducted first to show the feasibility and robustness of the method. The experimental Multi-Layer Perceptron (MLP) neural network model was fostered and validated by the N 2 diluted ethylene diffusion flames. Furthermore, the model capability tests were carried out as well for CO 2 diluted ethylene diffusion flames. Eventually, the model performance subjected to the Modulated Absorption/Emission (MAE) technique measurement uncertainties were detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芭娜55发布了新的文献求助10
2秒前
angelo发布了新的文献求助30
2秒前
桐桐应助小肥吴采纳,获得10
2秒前
xiaxia完成签到 ,获得积分10
2秒前
2秒前
12发布了新的文献求助10
3秒前
4秒前
酷酷的冰真应助东方越彬采纳,获得20
7秒前
苏清完成签到,获得积分20
8秒前
8秒前
内向的火车完成签到 ,获得积分10
9秒前
9秒前
Lucas应助一一采纳,获得10
10秒前
思源应助KKKZ采纳,获得10
10秒前
10秒前
angelo完成签到,获得积分10
10秒前
11秒前
科研張发布了新的文献求助10
14秒前
杨榆藤发布了新的文献求助10
14秒前
zlenetr发布了新的文献求助10
15秒前
烟花应助张利双采纳,获得10
15秒前
雪山飞龙发布了新的文献求助10
17秒前
17秒前
善学以致用应助小白采纳,获得10
19秒前
迪克bin完成签到,获得积分10
19秒前
皓月星辰发布了新的文献求助10
21秒前
大模型应助内向晓旋采纳,获得10
25秒前
25秒前
邢文瑞发布了新的文献求助10
26秒前
27秒前
传奇3应助冬冬采纳,获得10
27秒前
Azyyyy发布了新的文献求助10
28秒前
Xiaoxiao应助失眠的凡阳采纳,获得80
30秒前
31秒前
zz完成签到,获得积分20
31秒前
cmuzf完成签到,获得积分10
32秒前
XLL小绿绿发布了新的文献求助30
32秒前
samantha817发布了新的文献求助10
32秒前
32秒前
小蘑菇应助大宝采纳,获得10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579