Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames

烟灰 体积分数 材料科学 燃烧 扩散火焰 绝热火焰温度 热力学 计算机科学 生物系统 分析化学(期刊) 光学 物理 化学 有机化学 燃烧室 生物
作者
Tao Ren,Ya Zhou,Qianlong Wang,Haifeng Liu,Zhen Li,Changying Zhao
出处
期刊:Optics Express [The Optical Society]
卷期号:29 (2): 1678-1678 被引量:25
标识
DOI:10.1364/oe.413100
摘要

Inferring local soot temperature and volume fraction distributions from radiation emission measurements of sooting flames may involve solving nonlinear, ill-posed and high-dimensional problems, which are typically conducted by solving ill-posed problems with big matrices with regularization methods. Due to the high data throughput, they are usually inefficient and tedious. Machine learning approaches allow solving such problems, offering an alternative way to deal with complex and dynamic systems with good flexibility. In this study, we present an original and efficient machine learning approach for retrieving soot temperature and volume fraction fields simultaneously from single-color near-infrared emission measurements of dilute ethylene diffusion flames. The machine learning model gathers information from existing data and builds connections between combustion scalars (soot temperature and volume fraction) and emission measurements of flames. Numerical studies were conducted first to show the feasibility and robustness of the method. The experimental Multi-Layer Perceptron (MLP) neural network model was fostered and validated by the N 2 diluted ethylene diffusion flames. Furthermore, the model capability tests were carried out as well for CO 2 diluted ethylene diffusion flames. Eventually, the model performance subjected to the Modulated Absorption/Emission (MAE) technique measurement uncertainties were detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助YXT981221采纳,获得10
刚刚
yyr完成签到,获得积分10
1秒前
可爱的函函应助Nicole采纳,获得10
2秒前
在水一方应助阳光采纳,获得10
2秒前
FashionBoy应助任性的老四采纳,获得10
3秒前
3秒前
开朗梦曼完成签到 ,获得积分20
3秒前
coollz发布了新的文献求助10
3秒前
3秒前
HuanhuanGao完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Molecule完成签到,获得积分10
5秒前
脑洞疼应助yuyu采纳,获得10
6秒前
6秒前
7秒前
SciGPT应助shais采纳,获得10
7秒前
飘逸的山柏完成签到 ,获得积分10
7秒前
7秒前
8秒前
嘴嘴完成签到 ,获得积分20
9秒前
usr12完成签到,获得积分10
9秒前
wuxunxun2015发布了新的文献求助10
9秒前
望空发布了新的文献求助10
10秒前
脑洞疼应助快乐花卷采纳,获得10
11秒前
12秒前
12秒前
嘿嘿发布了新的文献求助10
12秒前
大大大漂亮完成签到 ,获得积分10
13秒前
13秒前
YXT981221发布了新的文献求助10
13秒前
13秒前
一一应助炙热的墨镜采纳,获得20
14秒前
14秒前
科研通AI6应助绿灯请通行采纳,获得30
14秒前
15秒前
隐形的大有完成签到,获得积分10
15秒前
16秒前
无花果应助keke采纳,获得10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781