Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames

烟灰 体积分数 材料科学 燃烧 扩散火焰 绝热火焰温度 热力学 计算机科学 生物系统 分析化学(期刊) 光学 物理 化学 有机化学 燃烧室 生物
作者
Tao Ren,Ya Zhou,Qianlong Wang,Haifeng Liu,Zhen Li,Changying Zhao
出处
期刊:Optics Express [The Optical Society]
卷期号:29 (2): 1678-1678 被引量:25
标识
DOI:10.1364/oe.413100
摘要

Inferring local soot temperature and volume fraction distributions from radiation emission measurements of sooting flames may involve solving nonlinear, ill-posed and high-dimensional problems, which are typically conducted by solving ill-posed problems with big matrices with regularization methods. Due to the high data throughput, they are usually inefficient and tedious. Machine learning approaches allow solving such problems, offering an alternative way to deal with complex and dynamic systems with good flexibility. In this study, we present an original and efficient machine learning approach for retrieving soot temperature and volume fraction fields simultaneously from single-color near-infrared emission measurements of dilute ethylene diffusion flames. The machine learning model gathers information from existing data and builds connections between combustion scalars (soot temperature and volume fraction) and emission measurements of flames. Numerical studies were conducted first to show the feasibility and robustness of the method. The experimental Multi-Layer Perceptron (MLP) neural network model was fostered and validated by the N 2 diluted ethylene diffusion flames. Furthermore, the model capability tests were carried out as well for CO 2 diluted ethylene diffusion flames. Eventually, the model performance subjected to the Modulated Absorption/Emission (MAE) technique measurement uncertainties were detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
李希完成签到 ,获得积分10
3秒前
十八完成签到,获得积分10
3秒前
JamesPei应助parasite采纳,获得10
4秒前
偏偏海发布了新的文献求助10
7秒前
Chang发布了新的文献求助20
8秒前
fdawn完成签到,获得积分10
10秒前
10秒前
12秒前
慈祥的一刀完成签到,获得积分20
13秒前
嘻嘻完成签到 ,获得积分10
15秒前
又欠发布了新的文献求助10
15秒前
十九完成签到,获得积分10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
dreamlightzy应助科研通管家采纳,获得10
16秒前
桐桐应助火星上谷云采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
17秒前
所所应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
ho应助科研通管家采纳,获得10
17秒前
SMG完成签到 ,获得积分10
17秒前
小杭76应助研友_Z3NGvn采纳,获得10
17秒前
createup完成签到,获得积分10
18秒前
星辰大海应助李浩然采纳,获得10
19秒前
等月光落雪地完成签到,获得积分10
19秒前
葡萄子完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
cathyliu完成签到,获得积分10
22秒前
22秒前
可爱的函函应助kkk采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310039
求助须知:如何正确求助?哪些是违规求助? 4454427
关于积分的说明 13860100
捐赠科研通 4342468
什么是DOI,文献DOI怎么找? 2384539
邀请新用户注册赠送积分活动 1379021
关于科研通互助平台的介绍 1347297