Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames

烟灰 体积分数 材料科学 燃烧 扩散火焰 绝热火焰温度 热力学 计算机科学 生物系统 分析化学(期刊) 光学 物理 化学 有机化学 燃烧室 生物
作者
Tao Ren,Ya Zhou,Qianlong Wang,Haifeng Liu,Zhen Li,Changying Zhao
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:29 (2): 1678-1678 被引量:25
标识
DOI:10.1364/oe.413100
摘要

Inferring local soot temperature and volume fraction distributions from radiation emission measurements of sooting flames may involve solving nonlinear, ill-posed and high-dimensional problems, which are typically conducted by solving ill-posed problems with big matrices with regularization methods. Due to the high data throughput, they are usually inefficient and tedious. Machine learning approaches allow solving such problems, offering an alternative way to deal with complex and dynamic systems with good flexibility. In this study, we present an original and efficient machine learning approach for retrieving soot temperature and volume fraction fields simultaneously from single-color near-infrared emission measurements of dilute ethylene diffusion flames. The machine learning model gathers information from existing data and builds connections between combustion scalars (soot temperature and volume fraction) and emission measurements of flames. Numerical studies were conducted first to show the feasibility and robustness of the method. The experimental Multi-Layer Perceptron (MLP) neural network model was fostered and validated by the N 2 diluted ethylene diffusion flames. Furthermore, the model capability tests were carried out as well for CO 2 diluted ethylene diffusion flames. Eventually, the model performance subjected to the Modulated Absorption/Emission (MAE) technique measurement uncertainties were detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶马发布了新的文献求助10
1秒前
1秒前
Xdy完成签到,获得积分10
1秒前
enen发布了新的文献求助10
1秒前
可爱的坤完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
少年旭发布了新的文献求助10
5秒前
5秒前
5秒前
Xdy发布了新的文献求助10
5秒前
科研牛马发布了新的文献求助10
6秒前
bkagyin应助子小孙采纳,获得10
7秒前
君与同行发布了新的文献求助10
7秒前
7秒前
内向面包完成签到,获得积分10
9秒前
尊敬的怡发布了新的文献求助10
9秒前
10秒前
123发布了新的文献求助10
11秒前
君与同行完成签到,获得积分10
12秒前
12秒前
qingmao完成签到,获得积分10
13秒前
14秒前
wanghuihui发布了新的文献求助30
15秒前
LaTeXer应助科研通管家采纳,获得100
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得100
16秒前
思源应助茶马采纳,获得10
16秒前
wop111应助科研通管家采纳,获得20
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
SciGPT应助大聪明采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906958
求助须知:如何正确求助?哪些是违规求助? 4184247
关于积分的说明 12993374
捐赠科研通 3950583
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185172
关于科研通互助平台的介绍 1091461