Artificial Intelligence Applied to Breast MRI for Improved Diagnosis

医学 接收机工作特性 医学诊断 乳腺癌 乳房磁振造影 乳房成像 放射科 乳腺摄影术 磁共振成像 人工智能 核医学 医学物理学 癌症 计算机科学 内科学
作者
Yulei Jiang,Alexandra Edwards,Gillian M. Newstead
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (1): 38-46 被引量:85
标识
DOI:10.1148/radiol.2020200292
摘要

Background Recognition of salient MRI morphologic and kinetic features of various malignant tumor subtypes and benign diseases, either visually or with artificial intelligence (AI), allows radiologists to improve diagnoses that may improve patient treatment. Purpose To evaluate whether the diagnostic performance of radiologists in the differentiation of cancer from noncancer at dynamic contrast material–enhanced (DCE) breast MRI is improved when using an AI system compared with conventionally available software. Materials and Methods In a retrospective clinical reader study, images from breast DCE MRI examinations were interpreted by 19 breast imaging radiologists from eight academic and 11 private practices. Readers interpreted each examination twice. In the “first read,” they were provided with conventionally available computer-aided evaluation software, including kinetic maps. In the “second read,” they were also provided with AI analytics through computer-aided diagnosis software. Reader diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis, with the area under the ROC curve (AUC) as a figure of merit in the task of distinguishing between malignant and benign lesions. The primary study end point was the difference in AUC between the first-read and the second-read conditions. Results One hundred eleven women (mean age, 52 years ± 13 [standard deviation]) were evaluated with a total of 111 breast DCE MRI examinations (54 malignant and 57 nonmalignant lesions). The average AUC of all readers improved from 0.71 to 0.76 (P = .04) when using the AI system. The average sensitivity improved when Breast Imaging Reporting and Data System (BI-RADS) category 3 was used as the cut point (from 90% to 94%; 95% confidence interval [CI] for the change: 0.8%, 7.4%) but not when using BI-RADS category 4a (from 80% to 85%; 95% CI: −0.9%, 11%). The average specificity showed no difference when using either BI-RADS category 4a or category 3 as the cut point (52% and 52% [95% CI: −7.3%, 6.0%], and from 29% to 28% [95% CI: −6.4%, 4.3%], respectively). Conclusion Use of an artificial intelligence system improves radiologists’ performance in the task of differentiating benign and malignant MRI breast lesions. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Krupinski in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助勤奋的蜗牛采纳,获得10
刚刚
1秒前
jery完成签到,获得积分10
1秒前
乐乐应助润润轩轩采纳,获得10
2秒前
指哪打哪完成签到,获得积分10
2秒前
弄井发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
3秒前
Wing完成签到 ,获得积分10
4秒前
R先生发布了新的文献求助10
4秒前
科研小白发布了新的文献求助10
4秒前
年三月完成签到 ,获得积分10
5秒前
lb完成签到,获得积分20
5秒前
5秒前
香蕉觅云应助叶飞荷采纳,获得10
6秒前
flow发布了新的文献求助10
7秒前
穆仰应助li采纳,获得10
7秒前
班尼肥鸭完成签到 ,获得积分10
7秒前
噔噔噔噔发布了新的文献求助10
7秒前
bkagyin应助ffff采纳,获得10
7秒前
000完成签到,获得积分10
7秒前
7秒前
Anxinxin发布了新的文献求助20
8秒前
8秒前
Ych完成签到,获得积分20
9秒前
lai发布了新的文献求助10
9秒前
彭彭发布了新的文献求助10
9秒前
ggb完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
迅速宛筠完成签到,获得积分10
10秒前
弄井完成签到,获得积分10
11秒前
充电宝应助无悔呀采纳,获得10
11秒前
11秒前
12秒前
000发布了新的文献求助10
12秒前
噔噔噔噔完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762