Artificial Intelligence Applied to Breast MRI for Improved Diagnosis

医学 接收机工作特性 医学诊断 乳腺癌 乳房磁振造影 乳房成像 放射科 乳腺摄影术 磁共振成像 人工智能 核医学 医学物理学 癌症 计算机科学 内科学
作者
Yulei Jiang,Alexandra Edwards,Gillian M. Newstead
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (1): 38-46 被引量:85
标识
DOI:10.1148/radiol.2020200292
摘要

Background Recognition of salient MRI morphologic and kinetic features of various malignant tumor subtypes and benign diseases, either visually or with artificial intelligence (AI), allows radiologists to improve diagnoses that may improve patient treatment. Purpose To evaluate whether the diagnostic performance of radiologists in the differentiation of cancer from noncancer at dynamic contrast material–enhanced (DCE) breast MRI is improved when using an AI system compared with conventionally available software. Materials and Methods In a retrospective clinical reader study, images from breast DCE MRI examinations were interpreted by 19 breast imaging radiologists from eight academic and 11 private practices. Readers interpreted each examination twice. In the “first read,” they were provided with conventionally available computer-aided evaluation software, including kinetic maps. In the “second read,” they were also provided with AI analytics through computer-aided diagnosis software. Reader diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis, with the area under the ROC curve (AUC) as a figure of merit in the task of distinguishing between malignant and benign lesions. The primary study end point was the difference in AUC between the first-read and the second-read conditions. Results One hundred eleven women (mean age, 52 years ± 13 [standard deviation]) were evaluated with a total of 111 breast DCE MRI examinations (54 malignant and 57 nonmalignant lesions). The average AUC of all readers improved from 0.71 to 0.76 (P = .04) when using the AI system. The average sensitivity improved when Breast Imaging Reporting and Data System (BI-RADS) category 3 was used as the cut point (from 90% to 94%; 95% confidence interval [CI] for the change: 0.8%, 7.4%) but not when using BI-RADS category 4a (from 80% to 85%; 95% CI: −0.9%, 11%). The average specificity showed no difference when using either BI-RADS category 4a or category 3 as the cut point (52% and 52% [95% CI: −7.3%, 6.0%], and from 29% to 28% [95% CI: −6.4%, 4.3%], respectively). Conclusion Use of an artificial intelligence system improves radiologists’ performance in the task of differentiating benign and malignant MRI breast lesions. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Krupinski in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小姜完成签到,获得积分10
1秒前
小文完成签到 ,获得积分10
2秒前
环秋发布了新的文献求助10
3秒前
Rocky完成签到 ,获得积分10
3秒前
tao完成签到 ,获得积分10
7秒前
8秒前
搜集达人应助lulu采纳,获得10
11秒前
高速旋转老沁完成签到 ,获得积分10
11秒前
852应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
15秒前
15秒前
卡卡瓦夏应助科研通管家采纳,获得20
15秒前
慕青应助科研通管家采纳,获得10
15秒前
15秒前
Hello应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
17秒前
chenyuns发布了新的文献求助10
17秒前
对待论文不能天真完成签到 ,获得积分10
18秒前
研友_LJGmvn完成签到,获得积分10
18秒前
乐乐应助小杨采纳,获得10
19秒前
环秋完成签到,获得积分0
19秒前
思无邪完成签到 ,获得积分10
21秒前
卫大公子发布了新的文献求助10
21秒前
xixi完成签到 ,获得积分10
22秒前
SX0000完成签到 ,获得积分10
22秒前
Frank应助MARKTTE采纳,获得800
24秒前
mingjie完成签到,获得积分10
24秒前
Sicily完成签到,获得积分10
26秒前
卫大公子完成签到,获得积分10
26秒前
lulu完成签到,获得积分10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242012
求助须知:如何正确求助?哪些是违规求助? 2886365
关于积分的说明 8242877
捐赠科研通 2554998
什么是DOI,文献DOI怎么找? 1383185
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417