亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence Applied to Breast MRI for Improved Diagnosis

医学 接收机工作特性 医学诊断 乳腺癌 乳房磁振造影 乳房成像 放射科 乳腺摄影术 磁共振成像 人工智能 核医学 医学物理学 癌症 计算机科学 内科学
作者
Yulei Jiang,Alexandra Edwards,Gillian M. Newstead
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (1): 38-46 被引量:85
标识
DOI:10.1148/radiol.2020200292
摘要

Background Recognition of salient MRI morphologic and kinetic features of various malignant tumor subtypes and benign diseases, either visually or with artificial intelligence (AI), allows radiologists to improve diagnoses that may improve patient treatment. Purpose To evaluate whether the diagnostic performance of radiologists in the differentiation of cancer from noncancer at dynamic contrast material–enhanced (DCE) breast MRI is improved when using an AI system compared with conventionally available software. Materials and Methods In a retrospective clinical reader study, images from breast DCE MRI examinations were interpreted by 19 breast imaging radiologists from eight academic and 11 private practices. Readers interpreted each examination twice. In the “first read,” they were provided with conventionally available computer-aided evaluation software, including kinetic maps. In the “second read,” they were also provided with AI analytics through computer-aided diagnosis software. Reader diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis, with the area under the ROC curve (AUC) as a figure of merit in the task of distinguishing between malignant and benign lesions. The primary study end point was the difference in AUC between the first-read and the second-read conditions. Results One hundred eleven women (mean age, 52 years ± 13 [standard deviation]) were evaluated with a total of 111 breast DCE MRI examinations (54 malignant and 57 nonmalignant lesions). The average AUC of all readers improved from 0.71 to 0.76 (P = .04) when using the AI system. The average sensitivity improved when Breast Imaging Reporting and Data System (BI-RADS) category 3 was used as the cut point (from 90% to 94%; 95% confidence interval [CI] for the change: 0.8%, 7.4%) but not when using BI-RADS category 4a (from 80% to 85%; 95% CI: −0.9%, 11%). The average specificity showed no difference when using either BI-RADS category 4a or category 3 as the cut point (52% and 52% [95% CI: −7.3%, 6.0%], and from 29% to 28% [95% CI: −6.4%, 4.3%], respectively). Conclusion Use of an artificial intelligence system improves radiologists’ performance in the task of differentiating benign and malignant MRI breast lesions. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Krupinski in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
41秒前
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
罗伊黄发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助石榴汁的书采纳,获得10
1分钟前
1分钟前
2分钟前
饱满的醉薇完成签到,获得积分10
2分钟前
chenzy完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
炙热雅琴发布了新的文献求助10
3分钟前
4分钟前
gszy1975完成签到,获得积分10
4分钟前
4分钟前
4分钟前
炙热雅琴发布了新的文献求助10
4分钟前
大个应助炙热雅琴采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
慕青应助石榴汁的书采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418344
求助须知:如何正确求助?哪些是违规求助? 4534024
关于积分的说明 14143055
捐赠科研通 4450314
什么是DOI,文献DOI怎么找? 2441159
邀请新用户注册赠送积分活动 1432920
关于科研通互助平台的介绍 1410269