Artificial Intelligence Applied to Breast MRI for Improved Diagnosis

医学 接收机工作特性 医学诊断 乳腺癌 乳房磁振造影 乳房成像 放射科 乳腺摄影术 磁共振成像 人工智能 核医学 医学物理学 癌症 计算机科学 内科学
作者
Yulei Jiang,Alexandra Edwards,Gillian M. Newstead
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (1): 38-46 被引量:85
标识
DOI:10.1148/radiol.2020200292
摘要

Background Recognition of salient MRI morphologic and kinetic features of various malignant tumor subtypes and benign diseases, either visually or with artificial intelligence (AI), allows radiologists to improve diagnoses that may improve patient treatment. Purpose To evaluate whether the diagnostic performance of radiologists in the differentiation of cancer from noncancer at dynamic contrast material–enhanced (DCE) breast MRI is improved when using an AI system compared with conventionally available software. Materials and Methods In a retrospective clinical reader study, images from breast DCE MRI examinations were interpreted by 19 breast imaging radiologists from eight academic and 11 private practices. Readers interpreted each examination twice. In the “first read,” they were provided with conventionally available computer-aided evaluation software, including kinetic maps. In the “second read,” they were also provided with AI analytics through computer-aided diagnosis software. Reader diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis, with the area under the ROC curve (AUC) as a figure of merit in the task of distinguishing between malignant and benign lesions. The primary study end point was the difference in AUC between the first-read and the second-read conditions. Results One hundred eleven women (mean age, 52 years ± 13 [standard deviation]) were evaluated with a total of 111 breast DCE MRI examinations (54 malignant and 57 nonmalignant lesions). The average AUC of all readers improved from 0.71 to 0.76 (P = .04) when using the AI system. The average sensitivity improved when Breast Imaging Reporting and Data System (BI-RADS) category 3 was used as the cut point (from 90% to 94%; 95% confidence interval [CI] for the change: 0.8%, 7.4%) but not when using BI-RADS category 4a (from 80% to 85%; 95% CI: −0.9%, 11%). The average specificity showed no difference when using either BI-RADS category 4a or category 3 as the cut point (52% and 52% [95% CI: −7.3%, 6.0%], and from 29% to 28% [95% CI: −6.4%, 4.3%], respectively). Conclusion Use of an artificial intelligence system improves radiologists’ performance in the task of differentiating benign and malignant MRI breast lesions. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Krupinski in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪上一枝蒿完成签到,获得积分10
1秒前
Csene发布了新的文献求助10
1秒前
银河以北鸿艳最美完成签到,获得积分10
2秒前
3秒前
gg发布了新的文献求助10
4秒前
XY完成签到,获得积分10
4秒前
asdfghjkl完成签到,获得积分10
6秒前
盛盛完成签到,获得积分10
7秒前
liuker完成签到,获得积分20
7秒前
8秒前
yqy关注了科研通微信公众号
8秒前
丘比特应助美丽的又菡采纳,获得10
8秒前
ding应助于啷啷采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
mwc完成签到,获得积分10
10秒前
cff发布了新的文献求助10
12秒前
Csene完成签到,获得积分10
13秒前
卡卡罗特发布了新的文献求助20
13秒前
13秒前
张雯思发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
情殇发布了新的文献求助10
15秒前
15秒前
gg完成签到,获得积分10
18秒前
18秒前
蒋念寒发布了新的文献求助10
18秒前
SciGPT应助墨酒采纳,获得10
18秒前
Hcc发布了新的文献求助10
19秒前
123发布了新的文献求助10
20秒前
pharm发布了新的文献求助10
22秒前
万能图书馆应助盛盛采纳,获得10
23秒前
小确幸完成签到,获得积分10
24秒前
28秒前
LIZHI完成签到 ,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452