Computational Prediction of Critical Temperatures of Superconductors Based on Convolutional Gradient Boosting Decision Trees

卷积神经网络 梯度升压 计算机科学 Boosting(机器学习) 人工智能 深度学习 决策树 超导电性 特征提取 模式识别(心理学) 特征(语言学) 交替决策树 机器学习 物理 凝聚态物理 决策树学习 随机森林 增量决策树 语言学 哲学
作者
Yabo Dan,Rongzhi Dong,Zhuo Cao,Xiang Li,Chengcheng Niu,Shaobo Li,Jianjun Hu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 57868-57878 被引量:17
标识
DOI:10.1109/access.2020.2981874
摘要

Superconductors have been one of the most intriguing materials since they were discovered more than a century ago. However, superconductors at room temperature have yet to be discovered. On the other hand, machine learning and especially deep learning has been increasingly used in material properties prediction and discovery in recent years. In this paper, we propose to combine the deep convolutional neural network (CNN) model with fully convolutional layers for feature extraction with gradient boosting decision tree (GBDT) for superconductors critical temperature (Tc) prediction. Our prediction model only uses the elemental property statistics of the materials as original input and learns a hierarchical representation of superconductors using convolutional layers. Computational experiments showed that our convolutional gradient boosting decision tree (ConvGBDT) model achieved the state-of-the-art results on three superconductor data sets: DataS, DataH, and DataK. By visually comparing the raw elemental feature distribution and the learned feature distribution, it is found that the convolutional layers of our ConvGBDT can learn features that can more effectively distinguish cuprate and iron-based superconductors. On the other hand, the GBDT part of our ConvGBDT model can learn the sophisticated mapping relationship between extracted features and the critical temperatures to obtain good prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助10
1秒前
子车茗应助权小夏采纳,获得20
1秒前
zeng123发布了新的文献求助10
1秒前
王宇杰发布了新的文献求助10
1秒前
2秒前
石夜一觞发布了新的文献求助10
3秒前
Rita应助科研通管家采纳,获得10
5秒前
小神仙应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得30
5秒前
Rita应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
rebeccahu应助科研通管家采纳,获得20
5秒前
酷波er应助科研通管家采纳,获得30
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助dellajj采纳,获得10
7秒前
8秒前
JamesPei应助老木虫采纳,获得10
8秒前
wang完成签到,获得积分20
9秒前
石夜一觞完成签到,获得积分10
10秒前
hou2012发布了新的文献求助30
10秒前
11秒前
11秒前
11秒前
11秒前
blush发布了新的文献求助10
12秒前
七七的小西西完成签到,获得积分10
12秒前
科研通AI2S应助阿宝采纳,获得10
12秒前
13秒前
13秒前
脑洞疼应助DCC采纳,获得10
13秒前
大个应助俭朴故事采纳,获得10
15秒前
muxinzx发布了新的文献求助30
15秒前
17秒前
17秒前
OrangeWang发布了新的文献求助10
17秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664