Artificial intelligence applications for thoracic imaging

医学 深度学习 人工智能 卷积神经网络 机器学习 人工智能应用 医学影像学 放射科 医学物理学 计算机科学
作者
Guillaume Chassagnon,Maria Vakalopoulou,Nikos Paragios,Marie-Pierre Revel
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:123: 108774-108774 被引量:155
标识
DOI:10.1016/j.ejrad.2019.108774
摘要

Artificial intelligence is a hot topic in medical imaging. The development of deep learning methods and in particular the use of convolutional neural networks (CNNs), have led to substantial performance gain over the classic machine learning techniques. Multiple usages are currently being evaluated, especially for thoracic imaging, such as such as lung nodule evaluation, tuberculosis or pneumonia detection or quantification of diffuse lung diseases. Chest radiography is a near perfect domain for the development of deep learning algorithms for automatic interpretation, requiring large annotated datasets, in view of the high number of procedures and increasing data availability. Current algorithms are able to detect up to 14 common anomalies, when present as isolated findings. Chest computed tomography is another major field of application for artificial intelligence, especially in the perspective of large scale lung cancer screening. It is important for radiologists to apprehend, contribute actively and lead this new era of radiology powered by artificial intelligence. Such a perspective requires understanding new terms and concepts associated with machine learning. The objective of this paper is to provide useful definitions for understanding the methods used and their possibilities, and report current and future developments for thoracic imaging. Prospective validation of AI tools will be required before reaching routine clinical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wwwwww完成签到,获得积分10
2秒前
小蘑菇应助DQY采纳,获得10
3秒前
白桃完成签到 ,获得积分10
5秒前
刘大海发布了新的文献求助10
6秒前
星川完成签到,获得积分10
8秒前
xpy发布了新的文献求助10
9秒前
9秒前
qiqiqiqiqi完成签到 ,获得积分10
9秒前
10秒前
情怀应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
13秒前
lingua给lingua的求助进行了留言
13秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
自然完成签到,获得积分10
13秒前
lookspace完成签到,获得积分10
13秒前
13秒前
自觉的时光完成签到,获得积分10
14秒前
hh发布了新的文献求助10
14秒前
畅快的海冬完成签到,获得积分10
15秒前
library2025应助老张采纳,获得10
16秒前
赚大钱完成签到,获得积分20
16秒前
hesongwen完成签到,获得积分10
19秒前
lhf完成签到,获得积分10
19秒前
qin希望应助畅快的海冬采纳,获得10
19秒前
原鑫完成签到 ,获得积分10
20秒前
忘记密码发布了新的文献求助10
20秒前
20秒前
yangjinru完成签到 ,获得积分10
22秒前
xiyinzhiwu完成签到,获得积分10
22秒前
bingyu306完成签到,获得积分10
23秒前
刘丰丰完成签到 ,获得积分10
23秒前
赚大钱发布了新的文献求助30
24秒前
999完成签到,获得积分10
24秒前
李爱国应助Ge Xiang采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578