细胞凋亡
KLF4公司
肿瘤坏死因子α
活力测定
流式细胞术
小RNA
癌症研究
生物
免疫学
分子生物学
医学
胚胎干细胞
SOX2
基因
生物化学
作者
Lan Zhang,Huan‐Li Yan,Huiping Wang,Li Wang,Boling Bai,Yingjun Ma,Yingchun Tie,Zhao-Xia Xi
标识
DOI:10.2174/1567202617666200128143634
摘要
Background: Neonatal pneumonia is a common disease in the neonatal period with a high incidence and death. This study aimed to investigate the molecular mechanism and effect of microRNA (miR)-429 in neonatal pneumonia. Methods: The peripheral blood was collected from neonatal pneumonia and healthy patients, respectively. Human lung fibroblast WI-38 cells were treated with lipopolysaccharide (LPS) to establish neonatal pneumonia cell model. Then, the miR-429 expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). In addition, the relationship between miR- 429 and kruppel-like factor 4 (KLF4) was confirmed by dual luciferase reporter assay. Cell viability, the level of interleukin 6 (IL-6), IL-1β and tumor necrosis factor α (TNF-α) and apoptosis were measured by Cell Counting Kit-8 (CCK-8), enzyme linked immunosorbent assay (ELISA) and flow cytometry. Meanwhile, apoptosis and nuclear factor kappa-B (NF-κB) pathway related proteins expression were analyzed by western blot. Results: MiR-429 expression level was increased in neonatal peripheral blood and LPS-stimulated WI-38 cells. Then, miR-429 overexpression increased apoptosis, the level of IL-6, IL-1β, TNF-α, Bax and cleaved caspase-3, while reduced cell viability in LPS-stimulated WI-38 cells. Besides, KLF4 was identified as the target gene of miR-429, and reversed the changes caused by miR-429 overexpression. Finally, miR-429 suppressor down-regulated p-NF-κB level in LPS-stimulated cells and KLF4 knockdown reversed these reductions. Conclusion: MiR-429 promotes inflammatory injury, apoptosis and activates the NF-κB signaling pathway by targeting KLF4 in neonatal pneumonia, and then these results provide evidence for clinical diagnosis and treatment for neonatal pneumonia.
科研通智能强力驱动
Strongly Powered by AbleSci AI