Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles

强化学习 计算机科学 运动规划 领域(数学) 人工智能 人工神经网络 国家(计算机科学) 标准化 控制(管理) 弹道 实现(概率) 控制工程 机器人 运动(物理) 工程类 统计 操作系统 物理 数学 纯数学 算法 天文
作者
Szilárd Aradi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 740-759 被引量:213
标识
DOI:10.1109/tits.2020.3024655
摘要

Academic research in the field of autonomous vehicles has reached high popularity in recent years related to several topics as sensor technologies, V2X communications, safety, security, decision making, control, and even legal and standardization rules. Besides classic control design approaches, Artificial Intelligence and Machine Learning methods are present in almost all of these fields. Another part of research focuses on different layers of Motion Planning, such as strategic decisions, trajectory planning, and control. A wide range of techniques in Machine Learning itself have been developed, and this article describes one of these fields, Deep Reinforcement Learning (DRL). The paper provides insight into the hierarchical motion planning problem and describes the basics of DRL. The main elements of designing such a system are the modeling of the environment, the modeling abstractions, the description of the state and the perception models, the appropriate rewarding, and the realization of the underlying neural network. The paper describes vehicle models, simulation possibilities and computational requirements. Strategic decisions on different layers and the observation models, e.g., continuous and discrete state representations, grid-based, and camera-based solutions are presented. The paper surveys the state-of-art solutions systematized by the different tasks and levels of autonomous driving, such as car-following, lane-keeping, trajectory following, merging, or driving in dense traffic. Finally, open questions and future challenges are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ddd完成签到,获得积分10
刚刚
刚刚
morii发布了新的文献求助10
1秒前
Six_seven完成签到,获得积分10
1秒前
1秒前
11完成签到,获得积分10
3秒前
4秒前
5秒前
不懈奋进应助TJN采纳,获得30
5秒前
liuqizong123发布了新的文献求助10
5秒前
fuje发布了新的文献求助10
6秒前
7秒前
FashionBoy应助鱼鱼鱼采纳,获得10
8秒前
冷酷向薇完成签到,获得积分10
10秒前
今后应助tracer采纳,获得10
10秒前
汉堡包应助星际帅帅采纳,获得10
10秒前
ysx_fish完成签到 ,获得积分10
10秒前
隐形曼青应助刘巧明采纳,获得10
10秒前
11发布了新的文献求助10
12秒前
jw发布了新的文献求助10
12秒前
fifteen发布了新的文献求助10
12秒前
12秒前
大模型应助大厨懒洋洋采纳,获得10
12秒前
13秒前
曾经觅云完成签到,获得积分10
13秒前
13秒前
humengxiao完成签到,获得积分10
14秒前
红汤加煎蛋完成签到,获得积分10
15秒前
17秒前
Ava应助范先生采纳,获得10
17秒前
酷波er应助曾经觅云采纳,获得10
18秒前
li完成签到,获得积分10
19秒前
宋雪芹完成签到 ,获得积分10
19秒前
20秒前
20秒前
NexusExplorer应助海苔卷采纳,获得10
21秒前
复杂的凝冬完成签到,获得积分10
21秒前
morii发布了新的文献求助10
21秒前
小幸运R完成签到 ,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153568
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861428
捐赠科研通 2462728
什么是DOI,文献DOI怎么找? 1310940
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809