Toward Equivalent Transformation of User Preferences in Cross Domain Recommendation

计算机科学 领域(数学分析) 推荐系统 代表(政治) 转化(遗传学) 情报检索 启发式 集合(抽象数据类型) 人工智能 政治 基因 数学分析 化学 程序设计语言 法学 生物化学 数学 政治学
作者
Xu Chen,Ya Zhang,Ivor W. Tsang,Yuangang Pan,Jingchao Su
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:41 (1): 1-31 被引量:3
标识
DOI:10.1145/3522762
摘要

Cross domain recommendation (CDR) is one popular research topic in recommender systems. This article focuses on a popular scenario for CDR where different domains share the same set of users but no overlapping items. The majority of recent methods have explored the shared-user representation to transfer knowledge across domains. However, the idea of shared-user representation resorts to learning the overlapped features of user preferences and suppresses the domain-specific features. Other works try to capture the domain-specific features by an MLP mapping but require heuristic human knowledge of choosing samples to train the mapping. In this article, we attempt to learn both features of user preferences in a more principled way. We assume that each user’s preferences in one domain can be expressed by the other one, and these preferences can be mutually converted to each other with the so-called equivalent transformation. Based on this assumption, we propose an equivalent transformation learner (ETL), which models the joint distribution of user behaviors across domains. The equivalent transformation in ETL relaxes the idea of shared-user representation and allows the learned preferences in different domains to preserve the domain-specific features as well as the overlapped features. Extensive experiments on three public benchmarks demonstrate the effectiveness of ETL compared with recent state-of-the-art methods. Codes and data are available online: https://github.com/xuChenSJTU/ETL-master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热沙来提完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
wanci应助HJJHJH采纳,获得10
4秒前
wxy发布了新的文献求助10
7秒前
7秒前
上官若男应助清脆的夜白采纳,获得10
9秒前
9秒前
香仔啊发布了新的文献求助10
9秒前
大个应助新宇星辰采纳,获得10
10秒前
科研通AI6应助悠夏sunny采纳,获得10
10秒前
nie完成签到,获得积分20
10秒前
失眠听南完成签到,获得积分10
10秒前
李会计和完成签到,获得积分10
11秒前
11秒前
寒冷南晴完成签到,获得积分10
12秒前
12秒前
ding应助结实半邪采纳,获得30
12秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得100
14秒前
852应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
老田发布了新的文献求助80
15秒前
JamesPei应助丰富伊采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355483
求助须知:如何正确求助?哪些是违规求助? 4487366
关于积分的说明 13969755
捐赠科研通 4387995
什么是DOI,文献DOI怎么找? 2410805
邀请新用户注册赠送积分活动 1403340
关于科研通互助平台的介绍 1376902