Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI

接收机工作特性 放射科 人工智能 支持向量机 模式识别(心理学) 随机森林
作者
Jianping Hu,Yijing Zhao,Mengcheng Li,Jianyi Liu,Feng Wang,Qiang Weng,Xingfu Wang,Dairong Cao
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:131: 109251- 被引量:8
标识
DOI:10.1016/j.ejrad.2020.109251
摘要

Abstract Purpose To investigate the prediction performance of radiomic models based on multiparametric MRI in predicting the meningioma grade. Method In all, 229 low-grade [Grade I] and 87 high-grade [Grade II/III] patients with pathologically diagnosed meningiomas were enrolled. Radiomic features from conventional MRI (cMRI), ADC maps and SWI were extracted based on the volume of entire tumor. Classification performance of different radiomic models (cMRI, ADC, SWI, cMRI + ADC, cMRI + SWI, ADC + SWI, and cMRI + ADC + SWI models) was evaluated by a nested LOOCV approach, combining the LASSO feature selection and RF classifier that was trained (1) without subsampling, and (2) with the synthetic minority over-sampling technique (SMOTE). The prediction performance of radiomic models was assessed using ROC curve and AUC of them was compared using Delong’s test. Results The cMRI + ADC + SWI model demonstrated the best performance without or with subsampling, which AUCs were 0.84 and 0.81, respectively. Following the cMRI + ADC + SWI model, the AUC range of the other models was 0.75−0.80 without subsampling, and was 0.71−0.79 with subsampling. Although the cMRI + ADC model and cMRI + SWI model showed higher AUCs than the cMRI model without subsampling (0.77 vs 0.80, P = 0.037 and 0.77 vs 0.80, P = 0.009, respectively), there was no significant difference among these models with subsampling (0.78 vs 0.77, P = 0.552 and 0.78 vs 0.79, P = 0.246, respectively). Conclusions Multiparametric radiomic model based on cMRI, ADC map and SWI yielded the best prediction performance in predicting the meningioma grade, which might offer potential guidance in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ypp完成签到,获得积分10
2秒前
zhyzty发布了新的文献求助10
3秒前
dreamode应助豆豆采纳,获得10
4秒前
赘婿应助xiaohongmao采纳,获得10
4秒前
Wang完成签到,获得积分10
4秒前
AURORA98发布了新的文献求助10
4秒前
5秒前
勤劳的丹南完成签到,获得积分10
8秒前
8秒前
北海完成签到 ,获得积分10
10秒前
123发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
xiaoyi发布了新的文献求助10
11秒前
华仔应助科研通管家采纳,获得30
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
xzy998应助科研通管家采纳,获得10
11秒前
爱听歌老1发布了新的文献求助30
14秒前
16秒前
16秒前
haizibo发布了新的文献求助10
17秒前
黎奈发布了新的文献求助10
19秒前
oxs完成签到 ,获得积分10
20秒前
21秒前
23秒前
义气高丽完成签到 ,获得积分10
23秒前
chenjun7080发布了新的文献求助30
25秒前
26秒前
ai完成签到,获得积分10
26秒前
xiaohongmao发布了新的文献求助10
27秒前
一颗橙子完成签到,获得积分10
28秒前
31秒前
xiaolang2004发布了新的文献求助10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459822
求助须知:如何正确求助?哪些是违规求助? 3054079
关于积分的说明 9040558
捐赠科研通 2743401
什么是DOI,文献DOI怎么找? 1504887
科研通“疑难数据库(出版商)”最低求助积分说明 695478
邀请新用户注册赠送积分活动 694754