Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI

医学 无线电技术 多参数磁共振成像 脑膜瘤 放射科 磁共振成像 医学物理学 核医学 内科学 癌症 前列腺癌
作者
Jianping Hu,Yijing Zhao,Mengcheng Li,Jianyi Liu,Feng Wang,Qiang Weng,Xingfu Wang,Dairong Cao
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:131: 109251-109251 被引量:54
标识
DOI:10.1016/j.ejrad.2020.109251
摘要

Abstract Purpose To investigate the prediction performance of radiomic models based on multiparametric MRI in predicting the meningioma grade. Method In all, 229 low-grade [Grade I] and 87 high-grade [Grade II/III] patients with pathologically diagnosed meningiomas were enrolled. Radiomic features from conventional MRI (cMRI), ADC maps and SWI were extracted based on the volume of entire tumor. Classification performance of different radiomic models (cMRI, ADC, SWI, cMRI + ADC, cMRI + SWI, ADC + SWI, and cMRI + ADC + SWI models) was evaluated by a nested LOOCV approach, combining the LASSO feature selection and RF classifier that was trained (1) without subsampling, and (2) with the synthetic minority over-sampling technique (SMOTE). The prediction performance of radiomic models was assessed using ROC curve and AUC of them was compared using Delong’s test. Results The cMRI + ADC + SWI model demonstrated the best performance without or with subsampling, which AUCs were 0.84 and 0.81, respectively. Following the cMRI + ADC + SWI model, the AUC range of the other models was 0.75−0.80 without subsampling, and was 0.71−0.79 with subsampling. Although the cMRI + ADC model and cMRI + SWI model showed higher AUCs than the cMRI model without subsampling (0.77 vs 0.80, P = 0.037 and 0.77 vs 0.80, P = 0.009, respectively), there was no significant difference among these models with subsampling (0.78 vs 0.77, P = 0.552 and 0.78 vs 0.79, P = 0.246, respectively). Conclusions Multiparametric radiomic model based on cMRI, ADC map and SWI yielded the best prediction performance in predicting the meningioma grade, which might offer potential guidance in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a水爱科研发布了新的文献求助10
1秒前
橙子才是唯一的水果完成签到,获得积分10
1秒前
hongw_liu完成签到,获得积分10
1秒前
烩面大师发布了新的文献求助10
3秒前
北欧海盗完成签到,获得积分10
3秒前
赘婿应助如初采纳,获得10
4秒前
lmy完成签到 ,获得积分10
4秒前
靓丽安珊完成签到,获得积分10
4秒前
orixero应助勤恳的从波采纳,获得10
5秒前
hayden发布了新的文献求助10
6秒前
1234hai发布了新的文献求助10
6秒前
6秒前
鹿七七啊完成签到 ,获得积分10
6秒前
jojodan应助大大怪采纳,获得10
6秒前
fmd123发布了新的文献求助10
7秒前
可爱的函函应助sonder采纳,获得10
7秒前
8秒前
xingyi发布了新的文献求助10
8秒前
祖f完成签到,获得积分10
9秒前
ChengYonghui完成签到,获得积分10
9秒前
所所应助kkk采纳,获得10
9秒前
9秒前
boltos完成签到,获得积分10
9秒前
彭于彦祖应助liars采纳,获得30
10秒前
10秒前
范范范发布了新的文献求助10
11秒前
脑洞疼应助qweasdzxcqwe采纳,获得30
11秒前
11秒前
思苇完成签到,获得积分10
11秒前
12秒前
飘逸秋荷发布了新的文献求助10
12秒前
lw发布了新的文献求助10
13秒前
13秒前
简单酸奶完成签到,获得积分10
14秒前
14秒前
dddd完成签到,获得积分10
14秒前
林小雨完成签到,获得积分10
14秒前
a水爱科研完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
干脆苹果发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600