Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI

医学 无线电技术 多参数磁共振成像 脑膜瘤 放射科 磁共振成像 医学物理学 核医学 内科学 癌症 前列腺癌
作者
Jianping Hu,Yijing Zhao,Mengcheng Li,Jianyi Liu,Feng Wang,Qiang Weng,Xingfu Wang,Dairong Cao
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:131: 109251-109251 被引量:57
标识
DOI:10.1016/j.ejrad.2020.109251
摘要

Abstract Purpose To investigate the prediction performance of radiomic models based on multiparametric MRI in predicting the meningioma grade. Method In all, 229 low-grade [Grade I] and 87 high-grade [Grade II/III] patients with pathologically diagnosed meningiomas were enrolled. Radiomic features from conventional MRI (cMRI), ADC maps and SWI were extracted based on the volume of entire tumor. Classification performance of different radiomic models (cMRI, ADC, SWI, cMRI + ADC, cMRI + SWI, ADC + SWI, and cMRI + ADC + SWI models) was evaluated by a nested LOOCV approach, combining the LASSO feature selection and RF classifier that was trained (1) without subsampling, and (2) with the synthetic minority over-sampling technique (SMOTE). The prediction performance of radiomic models was assessed using ROC curve and AUC of them was compared using Delong’s test. Results The cMRI + ADC + SWI model demonstrated the best performance without or with subsampling, which AUCs were 0.84 and 0.81, respectively. Following the cMRI + ADC + SWI model, the AUC range of the other models was 0.75−0.80 without subsampling, and was 0.71−0.79 with subsampling. Although the cMRI + ADC model and cMRI + SWI model showed higher AUCs than the cMRI model without subsampling (0.77 vs 0.80, P = 0.037 and 0.77 vs 0.80, P = 0.009, respectively), there was no significant difference among these models with subsampling (0.78 vs 0.77, P = 0.552 and 0.78 vs 0.79, P = 0.246, respectively). Conclusions Multiparametric radiomic model based on cMRI, ADC map and SWI yielded the best prediction performance in predicting the meningioma grade, which might offer potential guidance in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子蟹发布了新的文献求助20
刚刚
刚刚
JZY完成签到,获得积分10
刚刚
陌上尘发布了新的文献求助20
1秒前
mirror完成签到,获得积分10
1秒前
WangQ完成签到,获得积分10
1秒前
冷静铅笔完成签到,获得积分10
1秒前
2秒前
活泼的世平完成签到,获得积分10
2秒前
原始人发布了新的文献求助10
2秒前
doudou完成签到,获得积分10
3秒前
3秒前
王开阔发布了新的文献求助30
3秒前
3秒前
玩命的语兰完成签到,获得积分10
3秒前
zb完成签到 ,获得积分10
3秒前
zzzzz完成签到,获得积分10
3秒前
小情绪完成签到 ,获得积分10
4秒前
fdawn完成签到,获得积分10
4秒前
4秒前
嘿嘿嘿完成签到,获得积分10
4秒前
栗子完成签到,获得积分10
4秒前
4秒前
4秒前
orixero应助hxm采纳,获得10
5秒前
5秒前
abcdqqqqqqqqqqqq完成签到,获得积分10
5秒前
王艺欣应助gnr2000采纳,获得10
5秒前
蒙蒙发布了新的文献求助10
6秒前
YCc发布了新的文献求助20
6秒前
默默完成签到,获得积分10
6秒前
一夜暴富完成签到 ,获得积分10
6秒前
wanci应助小墩墩采纳,获得10
6秒前
研友_VZG7GZ应助131310采纳,获得10
6秒前
科研通AI2S应助bubble采纳,获得10
6秒前
Bubble发布了新的文献求助10
6秒前
qq发布了新的文献求助10
7秒前
丘比特应助铛铛采纳,获得10
7秒前
丘比特应助高高的盼山采纳,获得10
7秒前
Purplesky完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629273
求助须知:如何正确求助?哪些是违规求助? 4719812
关于积分的说明 14968585
捐赠科研通 4787320
什么是DOI,文献DOI怎么找? 2556296
邀请新用户注册赠送积分活动 1517408
关于科研通互助平台的介绍 1478125