DeepSeedling: deep convolutional network and Kalman filter for plant seedling detection and counting in the field

人工智能 学习迁移 试验装置 计算机科学 深度学习 过度拟合 领域(数学) 人口 机器学习 卷积神经网络 提前停车 模式识别(心理学) 数学 人工神经网络 人口学 社会学 纯数学
作者
Yu Jiang,Changying Li,Andrew H. Paterson,Jon S. Robertson
出处
期刊:Plant Methods [Springer Nature]
卷期号:15 (1) 被引量:102
标识
DOI:10.1186/s13007-019-0528-3
摘要

Plant population density is an important factor for agricultural production systems due to its substantial influence on crop yield and quality. Traditionally, plant population density is estimated by using either field assessment or a germination-test-based approach. These approaches can be laborious and inaccurate. Recent advances in deep learning provide new tools to solve challenging computer vision tasks such as object detection, which can be used for detecting and counting plant seedlings in the field. The goal of this study was to develop a deep-learning-based approach to count plant seedlings in the field.Overall, the final detection model achieved F1 scores of 0.727 (at IOUall ) and 0.969 (at IOU0.5 ) on the SeedlingAll testing set in which images had large variations, indicating the efficacy of the Faster RCNN model with the Inception ResNet v2 feature extractor for seedling detection. Ablation experiments showed that training data complexity substantially affected model generalizability, transfer learning efficiency, and detection performance improvements due to increased training sample size. Generally, the seedling counts by the developed method were highly correlated ( R2 = 0.98) with that found through human field assessment for 75 test videos collected in multiple locations during multiple years, indicating the accuracy of the developed approach. Further experiments showed that the counting accuracy was largely affected by the detection accuracy: the developed approach provided good counting performance for unknown datasets as long as detection models were well generalized to those datasets.The developed deep-learning-based approach can accurately count plant seedlings in the field. Seedling detection models trained in this study and the annotated images can be used by the research community and the cotton industry to further the development of solutions for seedling detection and counting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的向日葵完成签到,获得积分10
刚刚
Younes发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
碧蓝老黑完成签到,获得积分10
刚刚
炎燚发布了新的文献求助10
1秒前
1秒前
浮游应助魔音甜菜采纳,获得10
3秒前
科研通AI6应助满_1999采纳,获得10
4秒前
4秒前
6秒前
Ava应助fafafa采纳,获得10
7秒前
8秒前
科研通AI6应助alex采纳,获得10
9秒前
李健的小迷弟应助炎燚采纳,获得10
10秒前
闪闪的雨柏完成签到,获得积分10
11秒前
科研通AI6应助shengsheng采纳,获得10
12秒前
12秒前
科研通AI2S应助weixin112233采纳,获得10
12秒前
酷波er应助May采纳,获得10
12秒前
13秒前
13秒前
爱吃米线发布了新的文献求助10
13秒前
郑浩龙完成签到,获得积分10
13秒前
13秒前
Jane_Xin发布了新的文献求助10
14秒前
79完成签到,获得积分10
15秒前
ll完成签到,获得积分10
15秒前
15秒前
小卡拉米应助黎明采纳,获得10
15秒前
XiaoYuuu完成签到,获得积分10
15秒前
FashionBoy应助喂喂喂采纳,获得10
16秒前
Lei完成签到,获得积分10
16秒前
饭米粒发布了新的文献求助10
19秒前
19秒前
魔音甜菜完成签到,获得积分10
19秒前
ankang完成签到,获得积分10
19秒前
19秒前
20秒前
度帕明完成签到,获得积分10
21秒前
Jasper应助粗心的无剑采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524