亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepSeedling: deep convolutional network and Kalman filter for plant seedling detection and counting in the field

人工智能 学习迁移 试验装置 计算机科学 深度学习 过度拟合 领域(数学) 人口 机器学习 卷积神经网络 提前停车 模式识别(心理学) 数学 人工神经网络 社会学 人口学 纯数学
作者
Yu Jiang,Changying Li,Andrew H. Paterson,Jon S. Robertson
出处
期刊:Plant Methods [Springer Nature]
卷期号:15 (1) 被引量:90
标识
DOI:10.1186/s13007-019-0528-3
摘要

Plant population density is an important factor for agricultural production systems due to its substantial influence on crop yield and quality. Traditionally, plant population density is estimated by using either field assessment or a germination-test-based approach. These approaches can be laborious and inaccurate. Recent advances in deep learning provide new tools to solve challenging computer vision tasks such as object detection, which can be used for detecting and counting plant seedlings in the field. The goal of this study was to develop a deep-learning-based approach to count plant seedlings in the field.Overall, the final detection model achieved F1 scores of 0.727 (at IOUall ) and 0.969 (at IOU0.5 ) on the SeedlingAll testing set in which images had large variations, indicating the efficacy of the Faster RCNN model with the Inception ResNet v2 feature extractor for seedling detection. Ablation experiments showed that training data complexity substantially affected model generalizability, transfer learning efficiency, and detection performance improvements due to increased training sample size. Generally, the seedling counts by the developed method were highly correlated ( R2 = 0.98) with that found through human field assessment for 75 test videos collected in multiple locations during multiple years, indicating the accuracy of the developed approach. Further experiments showed that the counting accuracy was largely affected by the detection accuracy: the developed approach provided good counting performance for unknown datasets as long as detection models were well generalized to those datasets.The developed deep-learning-based approach can accurately count plant seedlings in the field. Seedling detection models trained in this study and the annotated images can be used by the research community and the cotton industry to further the development of solutions for seedling detection and counting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王仙人发布了新的文献求助10
6秒前
动听的飞松完成签到 ,获得积分10
27秒前
merrylake完成签到 ,获得积分10
54秒前
殷勤的晓夏完成签到,获得积分20
58秒前
烟花应助王仙人采纳,获得10
1分钟前
1分钟前
王仙人完成签到,获得积分20
1分钟前
1分钟前
1分钟前
to完成签到 ,获得积分10
1分钟前
爱心完成签到 ,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
coco发布了新的文献求助10
2分钟前
沙糖桔关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
zedhumble发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
搜集达人应助zedhumble采纳,获得10
2分钟前
2分钟前
沙糖桔发布了新的文献求助10
2分钟前
3分钟前
green发布了新的文献求助10
3分钟前
huangyao完成签到 ,获得积分10
3分钟前
Hello应助green采纳,获得50
3分钟前
野性的盼柳完成签到 ,获得积分20
3分钟前
乐乐乐乐乐乐应助huangyao采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
Hello应助寒冷的亦凝采纳,获得10
4分钟前
4分钟前
爱笑的栀虞完成签到 ,获得积分10
6分钟前
边曦完成签到 ,获得积分10
6分钟前
勇敢虫子不怕困难完成签到,获得积分10
6分钟前
6分钟前
7分钟前
凶狠的秀发完成签到,获得积分20
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805697
关于积分的说明 7865741
捐赠科研通 2463927
什么是DOI,文献DOI怎么找? 1311677
科研通“疑难数据库(出版商)”最低求助积分说明 629677
版权声明 601853