DeepSeedling: deep convolutional network and Kalman filter for plant seedling detection and counting in the field

人工智能 学习迁移 试验装置 计算机科学 深度学习 过度拟合 领域(数学) 人口 机器学习 卷积神经网络 提前停车 模式识别(心理学) 数学 人工神经网络 人口学 社会学 纯数学
作者
Yu Jiang,Changying Li,Andrew H. Paterson,Jon S. Robertson
出处
期刊:Plant Methods [Springer Nature]
卷期号:15 (1) 被引量:102
标识
DOI:10.1186/s13007-019-0528-3
摘要

Plant population density is an important factor for agricultural production systems due to its substantial influence on crop yield and quality. Traditionally, plant population density is estimated by using either field assessment or a germination-test-based approach. These approaches can be laborious and inaccurate. Recent advances in deep learning provide new tools to solve challenging computer vision tasks such as object detection, which can be used for detecting and counting plant seedlings in the field. The goal of this study was to develop a deep-learning-based approach to count plant seedlings in the field.Overall, the final detection model achieved F1 scores of 0.727 (at IOUall ) and 0.969 (at IOU0.5 ) on the SeedlingAll testing set in which images had large variations, indicating the efficacy of the Faster RCNN model with the Inception ResNet v2 feature extractor for seedling detection. Ablation experiments showed that training data complexity substantially affected model generalizability, transfer learning efficiency, and detection performance improvements due to increased training sample size. Generally, the seedling counts by the developed method were highly correlated ( R2 = 0.98) with that found through human field assessment for 75 test videos collected in multiple locations during multiple years, indicating the accuracy of the developed approach. Further experiments showed that the counting accuracy was largely affected by the detection accuracy: the developed approach provided good counting performance for unknown datasets as long as detection models were well generalized to those datasets.The developed deep-learning-based approach can accurately count plant seedlings in the field. Seedling detection models trained in this study and the annotated images can be used by the research community and the cotton industry to further the development of solutions for seedling detection and counting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助依米zhang采纳,获得10
1秒前
无情修杰完成签到 ,获得积分10
1秒前
文静的牛排完成签到,获得积分10
2秒前
2秒前
顺心的千萍完成签到,获得积分10
3秒前
无花果应助聪慧的凝海采纳,获得10
4秒前
2316690509完成签到 ,获得积分10
4秒前
4秒前
20年单身狗完成签到,获得积分10
6秒前
陈诗羽完成签到,获得积分10
6秒前
cz发布了新的文献求助10
7秒前
皮卡丘比特应助lalala采纳,获得20
7秒前
爱听歌从蓉关注了科研通微信公众号
8秒前
香蕉觅云应助zh采纳,获得10
8秒前
9秒前
金金金完成签到,获得积分10
10秒前
11秒前
LONG发布了新的文献求助10
13秒前
红烧肉耶发布了新的文献求助10
14秒前
kirazou完成签到,获得积分10
14秒前
lwj完成签到,获得积分10
15秒前
20秒前
共享精神应助自觉的小凝采纳,获得10
24秒前
JamesPei应助琪求好运采纳,获得10
24秒前
25秒前
25秒前
25秒前
guard发布了新的文献求助10
25秒前
Sweety-完成签到 ,获得积分10
26秒前
26秒前
达拉崩吧完成签到,获得积分10
27秒前
童万明完成签到,获得积分20
28秒前
没烦恼完成签到,获得积分10
29秒前
zz完成签到 ,获得积分10
29秒前
Owen应助TingtingGZ采纳,获得10
29秒前
pomfret完成签到 ,获得积分10
31秒前
没烦恼发布了新的文献求助10
33秒前
童万明发布了新的文献求助10
33秒前
阳阳完成签到,获得积分10
34秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511