Diabetes Prediction Using Ensembling of Different Machine Learning Classifiers

人工智能 朴素贝叶斯分类器 随机森林 计算机科学 机器学习 阿达布思 多层感知器 超参数 马修斯相关系数 离群值 分类器(UML) 接收机工作特性 模式识别(心理学) 缺少数据 人工神经网络 支持向量机
作者
Md. Kamrul Hasan,Md. Ashraful Alam,Dola Das,Eklas Hossain,Mahmudul Hasan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 76516-76531 被引量:335
标识
DOI:10.1109/access.2020.2989857
摘要

Diabetes, also known as chronic illness, is a group of metabolic diseases due to a high level of sugar in the blood over a long period. The risk factor and severity of diabetes can be reduced significantly if the precise early prediction is possible. The robust and accurate prediction of diabetes is highly challenging due to the limited number of labeled data and also the presence of outliers (or missing values) in the diabetes datasets. In this literature, we are proposing a robust framework for diabetes prediction where the outlier rejection, filling the missing values, data standardization, feature selection, K-fold cross-validation, and different Machine Learning (ML) classifiers (k-nearest Neighbour, Decision Trees, Random Forest, AdaBoost, Naive Bayes, and XGBoost) and Multilayer Perceptron (MLP) were employed. The weighted ensembling of different ML models is also proposed, in this literature, to improve the prediction of diabetes where the weights are estimated from the corresponding Area Under ROC Curve (AUC) of the ML model. AUC is chosen as the performance metric, which is then maximized during hyperparameter tuning using the grid search technique. All the experiments, in this literature, were conducted under the same experimental conditions using the Pima Indian Diabetes Dataset. From all the extensive experiments, our proposed ensembling classifier is the best performing classifier with the sensitivity, specificity, false omission rate, diagnostic odds ratio, and AUC as 0.789, 0.934, 0.092, 66.234, and 0.950 respectively which outperforms the state-of-the-art results by 2.00 % in AUC. Our proposed framework for the diabetes prediction outperforms the other methods discussed in the article. It can also provide better results on the same dataset which can lead to better performance in diabetes prediction. Our source code for diabetes prediction is made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖大米完成签到 ,获得积分10
1秒前
3秒前
4秒前
5秒前
CodeCraft应助今天不看文献采纳,获得10
7秒前
zz发布了新的文献求助10
7秒前
雪白凡梅完成签到 ,获得积分10
8秒前
Ava应助颜云尔采纳,获得10
8秒前
9秒前
9秒前
葛力发布了新的文献求助10
9秒前
eric888完成签到,获得积分0
10秒前
Nicole完成签到,获得积分10
11秒前
11秒前
晓山青完成签到,获得积分10
12秒前
科研通AI5应助Djnsbj采纳,获得10
12秒前
13秒前
百事从欢发布了新的文献求助10
13秒前
小马甲应助Much采纳,获得10
14秒前
叫滚滚发布了新的文献求助10
15秒前
15秒前
小甑发布了新的文献求助10
17秒前
反义词发布了新的文献求助10
17秒前
18秒前
李雷完成签到 ,获得积分10
19秒前
传奇3应助永恒采纳,获得10
20秒前
哈哈hehe发布了新的文献求助20
21秒前
顾矜应助11111采纳,获得10
24秒前
大模型应助百事从欢采纳,获得10
24秒前
24秒前
25秒前
轻松的惜芹应助can采纳,获得10
27秒前
28秒前
喔喔发布了新的文献求助20
28秒前
苏silence发布了新的文献求助10
30秒前
31秒前
32秒前
32秒前
Axin完成签到,获得积分10
34秒前
树123发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517