Diabetes Prediction Using Ensembling of Different Machine Learning Classifiers

人工智能 朴素贝叶斯分类器 随机森林 计算机科学 机器学习 阿达布思 多层感知器 超参数 马修斯相关系数 离群值 分类器(UML) 接收机工作特性 模式识别(心理学) 缺少数据 人工神经网络 支持向量机
作者
Md. Kamrul Hasan,Md. Ashraful Alam,Dola Das,Eklas Hossain,Mahmudul Hasan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 76516-76531 被引量:335
标识
DOI:10.1109/access.2020.2989857
摘要

Diabetes, also known as chronic illness, is a group of metabolic diseases due to a high level of sugar in the blood over a long period. The risk factor and severity of diabetes can be reduced significantly if the precise early prediction is possible. The robust and accurate prediction of diabetes is highly challenging due to the limited number of labeled data and also the presence of outliers (or missing values) in the diabetes datasets. In this literature, we are proposing a robust framework for diabetes prediction where the outlier rejection, filling the missing values, data standardization, feature selection, K-fold cross-validation, and different Machine Learning (ML) classifiers (k-nearest Neighbour, Decision Trees, Random Forest, AdaBoost, Naive Bayes, and XGBoost) and Multilayer Perceptron (MLP) were employed. The weighted ensembling of different ML models is also proposed, in this literature, to improve the prediction of diabetes where the weights are estimated from the corresponding Area Under ROC Curve (AUC) of the ML model. AUC is chosen as the performance metric, which is then maximized during hyperparameter tuning using the grid search technique. All the experiments, in this literature, were conducted under the same experimental conditions using the Pima Indian Diabetes Dataset. From all the extensive experiments, our proposed ensembling classifier is the best performing classifier with the sensitivity, specificity, false omission rate, diagnostic odds ratio, and AUC as 0.789, 0.934, 0.092, 66.234, and 0.950 respectively which outperforms the state-of-the-art results by 2.00 % in AUC. Our proposed framework for the diabetes prediction outperforms the other methods discussed in the article. It can also provide better results on the same dataset which can lead to better performance in diabetes prediction. Our source code for diabetes prediction is made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaoding应助longtengfei采纳,获得10
刚刚
mmr完成签到 ,获得积分10
刚刚
龙仔子完成签到 ,获得积分10
1秒前
1秒前
录录发布了新的文献求助10
1秒前
包容的忆灵完成签到 ,获得积分10
2秒前
美好灵寒完成签到 ,获得积分10
2秒前
2秒前
深情安青应助orange9采纳,获得10
2秒前
文静的翠安完成签到,获得积分10
4秒前
星辰与月完成签到,获得积分10
4秒前
帅哥吴克完成签到,获得积分10
5秒前
5秒前
5秒前
selinann完成签到,获得积分10
7秒前
务实黄豆发布了新的文献求助10
7秒前
zhaozhao完成签到,获得积分10
7秒前
平常冬天完成签到,获得积分10
7秒前
yu完成签到 ,获得积分10
8秒前
8秒前
Liar完成签到,获得积分10
8秒前
8秒前
念念完成签到,获得积分20
9秒前
向聿发布了新的文献求助10
9秒前
durance完成签到,获得积分10
9秒前
昰昱完成签到,获得积分10
11秒前
录录完成签到,获得积分10
11秒前
搜集达人应助淡定小蜜蜂采纳,获得10
12秒前
QJL完成签到,获得积分10
13秒前
尊敬的小土豆完成签到,获得积分10
13秒前
充电宝应助Vincent采纳,获得10
13秒前
精明的曼易完成签到 ,获得积分10
16秒前
司空绝山完成签到,获得积分10
17秒前
phw2333完成签到,获得积分10
17秒前
Hou完成签到,获得积分10
17秒前
wo_qq111完成签到 ,获得积分10
17秒前
斑鸠津完成签到 ,获得积分10
18秒前
朴实依琴完成签到,获得积分10
18秒前
向聿完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150700
求助须知:如何正确求助?哪些是违规求助? 2802232
关于积分的说明 7846614
捐赠科研通 2459579
什么是DOI,文献DOI怎么找? 1309294
科研通“疑难数据库(出版商)”最低求助积分说明 628849
版权声明 601757