Constructing grey prediction models using grey relational analysis and neural networks for magnesium material demand forecasting

灰色关联分析 残余物 人工神经网络 计算机科学 样品(材料) 数据挖掘 预测建模 人工智能 机器学习 统计 数学 算法 材料科学 化学 冶金 色谱法
作者
Yi‐Chung Hu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:93: 106398-106398 被引量:50
标识
DOI:10.1016/j.asoc.2020.106398
摘要

In terms of environmental protection, magnesium is a lightweight material that has been widely used to manufacture components for electronics. By forecasting the demand for magnesium materials, we can evaluate its prospects in the related industries. Grey prediction is appropriate for this study, because there is limited available data on the demand for magnesium, and it does not coincide with the statistical assumptions. Therefore, this study applies the GM(1,1) model, which is the most frequently used grey prediction model, to forecast the demand for magnesium materials. To improve the accuracy of predictions with the GM(1,1) model, its residual modification was established by the neural network. In particular, this study used grey relational analysis to estimate the weight of each sample that was required to avoid unreasonably treating each sample with equal importance in the traditional grey prediction. The forecasting ability of the proposed grey residual modification models was verified using real data regarding the demand for magnesium materials. The results showed that the proposed prediction model performed well compared with the other prediction models considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助sakyadamo采纳,获得10
刚刚
刚刚
3秒前
Jared应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得20
4秒前
大模型应助科研通管家采纳,获得10
4秒前
健壮平灵应助科研通管家采纳,获得20
4秒前
Hello应助科研通管家采纳,获得20
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
wxyshare应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
wxyshare应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
wxyshare应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
光亮鹤完成签到,获得积分20
5秒前
5秒前
5秒前
dwzhang完成签到,获得积分10
5秒前
czl完成签到,获得积分20
6秒前
wanci应助饭小心采纳,获得10
6秒前
隐形的小蚂蚁完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642142
求助须知:如何正确求助?哪些是违规求助? 4758300
关于积分的说明 15016687
捐赠科研通 4800688
什么是DOI,文献DOI怎么找? 2566186
邀请新用户注册赠送积分活动 1524265
关于科研通互助平台的介绍 1483901