A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes

蓝藻 水华 环境科学 生态学 海洋学 生物 地质学 浮游植物 营养物 遗传学 细菌
作者
Benny Zuse Rousso,Edoardo Bertone,Rodney A. Stewart,David P. Hamilton
出处
期刊:Water Research [Elsevier]
卷期号:182: 115959-115959 被引量:219
标识
DOI:10.1016/j.watres.2020.115959
摘要

Cyanobacteria harmful blooms (CyanoHABs) in lakes and reservoirs represent a major risk for water authorities globally due to their toxicity and economic impacts. Anticipating bloom occurrence and understanding the main drivers of CyanoHABs are needed to optimize water resources management. An extensive review of the application of CyanoHABs forecasting and predictive models was performed, and a summary of the current state of knowledge, limitations and research opportunities on this topic is provided through analysis of case studies. Two modelling approaches were used to achieve CyanoHABs anticipation; process-based (PB) and data-driven (DD) models. The objective of the model was a determining factor for the choice of modelling approach. PB models were more frequently used to predict future scenarios whereas DD models were employed for short-term forecasts. Each modelling approach presented multiple variations that may be applied for more specific, targeted purposes. Most models reviewed were site-specific. The monitoring methodologies, including data frequency, uncertainty and precision, were identified as a major limitation to improve model performance. A lack of standardization of both model output and performance metrics was observed. CyanoHAB modelling is an interdisciplinary topic and communication between disciplines should be improved to facilitate model comparisons. These shortcomings can hinder the adoption of modelling tools by practitioners. We suggest that water managers should focus on generalising models for lakes with similar characteristics and where possible use high frequency monitoring for model development and validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
W黑猫发布了新的文献求助30
5秒前
5秒前
喵呜发布了新的文献求助10
7秒前
8秒前
007发布了新的文献求助10
9秒前
奶油小饼干完成签到,获得积分10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
xjcy应助科研通管家采纳,获得10
12秒前
xjcy应助科研通管家采纳,获得10
12秒前
12秒前
xjcy应助科研通管家采纳,获得10
12秒前
吱哦周完成签到,获得积分20
13秒前
爆米花应助禹宛白采纳,获得10
14秒前
lulu917完成签到,获得积分20
14秒前
15秒前
追寻的怜容完成签到 ,获得积分10
16秒前
大模型应助独特靖巧采纳,获得10
17秒前
小舒完成签到 ,获得积分10
19秒前
FFF123发布了新的文献求助10
21秒前
FashionBoy应助Ha哈采纳,获得10
21秒前
希希完成签到,获得积分10
24秒前
年轻乘云完成签到,获得积分10
24秒前
DaSheng发布了新的文献求助10
25秒前
喵呜完成签到,获得积分10
27秒前
MADAO发布了新的文献求助20
28秒前
32秒前
loey完成签到,获得积分10
32秒前
32秒前
32秒前
33秒前
东十八完成签到 ,获得积分10
33秒前
36秒前
独特靖巧发布了新的文献求助10
36秒前
aaswsdw发布了新的文献求助10
37秒前
白犀牛完成签到,获得积分10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292087
求助须知:如何正确求助?哪些是违规求助? 2928499
关于积分的说明 8437215
捐赠科研通 2600507
什么是DOI,文献DOI怎么找? 1419116
科研通“疑难数据库(出版商)”最低求助积分说明 660237
邀请新用户注册赠送积分活动 642866