QTG-Finder2: A Generalized Machine-Learning Algorithm for Prioritizing QTL Causal Genes in Plants

数量性状位点 基因 候选基因 生物 拟南芥 基于家系的QTL定位 遗传学 精确性和召回率 计算生物学 人工智能 计算机科学 基因定位 染色体 突变体
作者
Fan Lin,Elena Lazarus,Seung Y. Rhee
出处
期刊:G3: Genes, Genomes, Genetics [Oxford University Press]
卷期号:10 (7): 2411-2421 被引量:15
标识
DOI:10.1534/g3.120.401122
摘要

Abstract Linkage mapping has been widely used to identify quantitative trait loci (QTL) in many plants and usually requires a time-consuming and labor-intensive fine mapping process to find the causal gene underlying the QTL. Previously, we described QTG-Finder, a machine-learning algorithm to rationally prioritize candidate causal genes in QTLs. While it showed good performance, QTG-Finder could only be used in Arabidopsis and rice because of the limited number of known causal genes in other species. Here we tested the feasibility of enabling QTG-Finder to work on species that have few or no known causal genes by using orthologs of known causal genes as the training set. The model trained with orthologs could recall about 64% of Arabidopsis and 83% of rice causal genes when the top 20% ranked genes were considered, which is similar to the performance of models trained with known causal genes. The average precision was 0.027 for Arabidopsis and 0.029 for rice. We further extended the algorithm to include polymorphisms in conserved non-coding sequences and gene presence/absence variation as additional features. Using this algorithm, QTG-Finder2, we trained and cross-validated Sorghum bicolor and Setaria viridis models. The S. bicolor model was validated by causal genes curated from the literature and could recall 70% of causal genes when the top 20% ranked genes were considered. In addition, we applied the S. viridis model and public transcriptome data to prioritize a plant height QTL and identified 13 candidate genes. QTL-Finder2 can accelerate the discovery of causal genes in any plant species and facilitate agricultural trait improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伯爵完成签到 ,获得积分10
1秒前
昏睡的眼神完成签到 ,获得积分10
2秒前
tiger完成签到,获得积分10
2秒前
F_ken完成签到 ,获得积分10
3秒前
yirenli完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
丁静完成签到 ,获得积分10
5秒前
Kz完成签到,获得积分10
5秒前
pantene完成签到 ,获得积分10
5秒前
十月揽星河完成签到 ,获得积分10
6秒前
ZX612完成签到,获得积分10
6秒前
SinU应助zlx采纳,获得10
6秒前
xie完成签到 ,获得积分10
7秒前
tkdzjr12345发布了新的文献求助10
8秒前
赵亚南完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
芙瑞发布了新的文献求助10
9秒前
was_3完成签到,获得积分10
9秒前
笨笨鲜花完成签到,获得积分10
10秒前
爆米花应助半颗橙子采纳,获得10
10秒前
DocZhao完成签到 ,获得积分10
13秒前
ting完成签到,获得积分10
13秒前
Bingtao_Lian完成签到 ,获得积分10
13秒前
清爽盼秋完成签到,获得积分10
14秒前
qiancib202完成签到,获得积分10
15秒前
王敏完成签到 ,获得积分10
17秒前
麻烦害死猫完成签到 ,获得积分10
17秒前
轻昀完成签到,获得积分10
17秒前
优秀傲松完成签到,获得积分10
18秒前
19秒前
小熊猫完成签到,获得积分10
19秒前
半颗橙子完成签到,获得积分10
20秒前
cq_2完成签到,获得积分10
20秒前
Flyzhang完成签到,获得积分10
21秒前
Cher完成签到 ,获得积分10
22秒前
Linda完成签到,获得积分10
22秒前
ypljk完成签到,获得积分10
22秒前
务实的绮山完成签到,获得积分10
23秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711424
捐赠科研通 2427554
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169