DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy

分割 计算机科学 体积热力学 放射治疗 人工智能 食管癌 医学 数学 医学物理学 癌症 放射科 物理 量子力学 内科学
作者
Dakai Jin,Dazhou Guo,Tsung‐Ying Ho,Adam P. Harrison,Jing Xiao,Chen‐Kan Tseng,Le Lü
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:68: 101909-101909 被引量:66
标识
DOI:10.1016/j.media.2020.101909
摘要

Gross tumor volume (GTV) and clinical target volume (CTV) delineation are two critical steps in the cancer radiotherapy planning. GTV defines the primary treatment area of the gross tumor, while CTV outlines the sub-clinical malignant disease. Automatic GTV and CTV segmentation are both challenging for distinct reasons: GTV segmentation relies on the radiotherapy computed tomography (RTCT) image appearance, which suffers from poor contrast with the surrounding tissues, while CTV delineation relies on a mixture of predefined and judgement-based margins. High intra- and inter-user variability makes this a particularly difficult task. We develop tailored methods solving each task in the esophageal cancer radiotherapy, together leading to a comprehensive solution for the target contouring task. Specifically, we integrate the RTCT and positron emission tomography (PET) modalities together into a two-stream chained deep fusion framework taking advantage of both modalities to facilitate more accurate GTV segmentation. For CTV segmentation, since it is highly context-dependent—it must encompass the GTV and involved lymph nodes while also avoiding excessive exposure to the organs at risk—we formulate it as a deep contextual appearance-based problem using encoded spatial distances of these anatomical structures. This better emulates the margin- and appearance-based CTV delineation performed by oncologists. Adding to our contributions, for the GTV segmentation we propose a simple yet effective progressive semantically-nested network (PSNN) backbone that outperforms more complicated models. Our work is the first to provide a comprehensive solution for the esophageal GTV and CTV segmentation in radiotherapy planning. Extensive 4-fold cross-validation on 148 esophageal cancer patients, the largest analysis to date, was carried out for both tasks. The results demonstrate that our GTV and CTV segmentation approaches significantly improve the performance over previous state-of-the-art works, e.g., by 8.7% increases in Dice score (DSC) and 32.9mm reduction in Hausdorff distance (HD) for GTV segmentation, and by 3.4% increases in DSC and 29.4mm reduction in HD for CTV segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助gggja采纳,获得10
刚刚
雯雯发布了新的文献求助10
1秒前
小二郎应助lanhaishibei采纳,获得10
1秒前
奔流的河发布了新的文献求助10
1秒前
辰凉完成签到,获得积分10
2秒前
科研小炽丹完成签到,获得积分10
2秒前
qin发布了新的文献求助30
2秒前
2秒前
楚楚楚完成签到,获得积分10
2秒前
PinKing完成签到 ,获得积分10
2秒前
3秒前
zhl完成签到,获得积分10
3秒前
Mr.egg发布了新的文献求助10
3秒前
居学尉完成签到,获得积分10
4秒前
派大星完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助神奇的种子采纳,获得10
4秒前
Owen应助姜彦乔采纳,获得30
4秒前
5秒前
5秒前
科研通AI2S应助小手姑娘采纳,获得10
5秒前
6秒前
rxl应助大晨采纳,获得10
8秒前
taoyuan完成签到,获得积分10
8秒前
963发布了新的文献求助10
8秒前
scholar丨崔发布了新的文献求助10
8秒前
蒲公英发布了新的文献求助10
9秒前
9秒前
小二郎应助吴婷采纳,获得10
9秒前
Q。发布了新的文献求助10
10秒前
完美世界应助encounter采纳,获得10
10秒前
罗大富发布了新的文献求助10
10秒前
10秒前
11秒前
舒适从菡发布了新的文献求助10
11秒前
Fn发布了新的文献求助10
11秒前
11秒前
12秒前
明天会更美好完成签到,获得积分10
12秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410946
求助须知:如何正确求助?哪些是违规求助? 3014465
关于积分的说明 8863633
捐赠科研通 2701905
什么是DOI,文献DOI怎么找? 1481296
科研通“疑难数据库(出版商)”最低求助积分说明 684774
邀请新用户注册赠送积分活动 679298