Unsupervised GAN-CIRCLE for high-resolution reconstruction of bone microstructure from low-resolution CT scans

分辨率(逻辑) 骨质疏松症 高分辨率 核医学 图像分辨率 定量计算机断层扫描 材料科学 断层摄影术 生物医学工程 骨矿物 放射科 人工智能 医学 计算机科学 地质学 遥感 内分泌学
作者
Indranil Guha,Syed Ahmed Nadeem,Zhang Xiao-liu,Steven M. Levy,James C. Torner,Punam K. Saha
标识
DOI:10.1117/12.2581068
摘要

Osteoporosis is an age-related disease associated with reduced bone density and increased fracture-risk. It is known that bone microstructural quality is a significant determinant of trabecular bone strength and fracture-risk. Emerging CT technology allows high-resolution in vivo imaging at peripheral sites enabling assessment of bone microstructure at low radiation. Resolution dependence of bone microstructural measures together with varying technologies and rapid upgrades in CT scanners warrants data-harmonization in multi-site as well as longitudinal studies. This paper presents an unsupervised deep learning method for high-resolution reconstruction of bone microstructure from low-resolution CT scans using GAN-CIRCLE. The unsupervised training alleviates the need of registered low- and high-resolution images, which is often unavailable. Low- and high-resolution ankle CT scans of twenty volunteers were used for training, validation, and evaluation. Ten thousand unregistered low- and high-resolution patches of size 64×64 were randomly harvested from CT scans of ten volunteers for training and validation. Five thousand matched pairs of low- and highresolution patches were generated for evaluation after registering CT scan pairs from other ten volunteers. Quantitative comparison shows that predicted high-resolution scans have significantly improved structural similarity index (p < 0.01) with true high-resolution scans as compared to the same metric derived from low-resolution data. Also, trabecular bone microstructural measures such as thickness and network area measures computed from predicted high-resolution CT images showed higher (CCC = [0.90, 0.84]) agreement with the reference measures from true high-resolution scans compared to the same measures derived from low-resolution images (CCC = [0.66, 0.83]).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王小平完成签到,获得积分10
1秒前
2秒前
輓楓完成签到,获得积分10
3秒前
3秒前
HUO发布了新的文献求助10
3秒前
张张张完成签到,获得积分10
3秒前
6秒前
6秒前
Z17完成签到,获得积分10
6秒前
luct发布了新的文献求助10
7秒前
CodeCraft应助寒鸦浮水采纳,获得10
11秒前
半富半莲发布了新的文献求助10
11秒前
HUO完成签到,获得积分10
11秒前
13秒前
luct完成签到,获得积分10
13秒前
在水一方应助二指弹采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
星辰大海应助without采纳,获得10
15秒前
小胖爱学习完成签到,获得积分10
16秒前
zhenghang发布了新的文献求助10
17秒前
大地上的鱼完成签到,获得积分10
18秒前
Cheney发布了新的文献求助10
19秒前
半富半莲完成签到,获得积分10
20秒前
flj7038完成签到,获得积分0
21秒前
潜龙发布了新的文献求助10
22秒前
完美世界应助zhangwansen采纳,获得10
22秒前
23秒前
can完成签到,获得积分10
23秒前
梧桐应助Ashley采纳,获得10
25秒前
二指弹发布了新的文献求助10
27秒前
汉堡包应助我就是KKKK采纳,获得10
27秒前
隐形曼青应助Xulun采纳,获得10
28秒前
烟花应助无语的麦片采纳,获得10
29秒前
娃娃菜妮完成签到 ,获得积分10
30秒前
谨慎鞅完成签到,获得积分10
30秒前
自由从筠完成签到 ,获得积分10
30秒前
33秒前
33秒前
网友依旧完成签到,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499