清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unsupervised GAN-CIRCLE for high-resolution reconstruction of bone microstructure from low-resolution CT scans

分辨率(逻辑) 骨质疏松症 高分辨率 核医学 图像分辨率 定量计算机断层扫描 材料科学 断层摄影术 生物医学工程 骨矿物 放射科 人工智能 医学 计算机科学 地质学 遥感 内分泌学
作者
Indranil Guha,Syed Ahmed Nadeem,Zhang Xiao-liu,Steven M. Levy,James C. Torner,Punam K. Saha
标识
DOI:10.1117/12.2581068
摘要

Osteoporosis is an age-related disease associated with reduced bone density and increased fracture-risk. It is known that bone microstructural quality is a significant determinant of trabecular bone strength and fracture-risk. Emerging CT technology allows high-resolution in vivo imaging at peripheral sites enabling assessment of bone microstructure at low radiation. Resolution dependence of bone microstructural measures together with varying technologies and rapid upgrades in CT scanners warrants data-harmonization in multi-site as well as longitudinal studies. This paper presents an unsupervised deep learning method for high-resolution reconstruction of bone microstructure from low-resolution CT scans using GAN-CIRCLE. The unsupervised training alleviates the need of registered low- and high-resolution images, which is often unavailable. Low- and high-resolution ankle CT scans of twenty volunteers were used for training, validation, and evaluation. Ten thousand unregistered low- and high-resolution patches of size 64×64 were randomly harvested from CT scans of ten volunteers for training and validation. Five thousand matched pairs of low- and highresolution patches were generated for evaluation after registering CT scan pairs from other ten volunteers. Quantitative comparison shows that predicted high-resolution scans have significantly improved structural similarity index (p < 0.01) with true high-resolution scans as compared to the same metric derived from low-resolution data. Also, trabecular bone microstructural measures such as thickness and network area measures computed from predicted high-resolution CT images showed higher (CCC = [0.90, 0.84]) agreement with the reference measures from true high-resolution scans compared to the same measures derived from low-resolution images (CCC = [0.66, 0.83]).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
ceeray23发布了新的文献求助20
8秒前
souther完成签到,获得积分0
56秒前
SciGPT应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
sage_kakarotto完成签到 ,获得积分10
1分钟前
大喜喜发布了新的文献求助200
1分钟前
AA完成签到 ,获得积分10
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
发呆员发布了新的文献求助10
1分钟前
旅行者完成签到,获得积分10
2分钟前
TXZ06发布了新的文献求助10
2分钟前
科研通AI6应助发呆员采纳,获得10
2分钟前
lululemontree应助大刘采纳,获得30
2分钟前
2分钟前
大喜喜发布了新的文献求助10
2分钟前
LinglongCai完成签到 ,获得积分10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
barry发布了新的文献求助10
3分钟前
ceeray23发布了新的文献求助20
4分钟前
tt完成签到,获得积分10
4分钟前
发呆员发布了新的文献求助10
4分钟前
科研通AI2S应助发呆员采纳,获得10
4分钟前
4分钟前
白日睡觉发布了新的文献求助10
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
雪山飞龙发布了新的文献求助10
4分钟前
英俊的铭应助白日睡觉采纳,获得10
4分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4613925
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531