Unsupervised GAN-CIRCLE for high-resolution reconstruction of bone microstructure from low-resolution CT scans

分辨率(逻辑) 骨质疏松症 高分辨率 核医学 图像分辨率 定量计算机断层扫描 材料科学 断层摄影术 生物医学工程 骨矿物 放射科 人工智能 医学 计算机科学 地质学 遥感 内分泌学
作者
Indranil Guha,Syed Ahmed Nadeem,Zhang Xiao-liu,Steven M. Levy,James C. Torner,Punam K. Saha
标识
DOI:10.1117/12.2581068
摘要

Osteoporosis is an age-related disease associated with reduced bone density and increased fracture-risk. It is known that bone microstructural quality is a significant determinant of trabecular bone strength and fracture-risk. Emerging CT technology allows high-resolution in vivo imaging at peripheral sites enabling assessment of bone microstructure at low radiation. Resolution dependence of bone microstructural measures together with varying technologies and rapid upgrades in CT scanners warrants data-harmonization in multi-site as well as longitudinal studies. This paper presents an unsupervised deep learning method for high-resolution reconstruction of bone microstructure from low-resolution CT scans using GAN-CIRCLE. The unsupervised training alleviates the need of registered low- and high-resolution images, which is often unavailable. Low- and high-resolution ankle CT scans of twenty volunteers were used for training, validation, and evaluation. Ten thousand unregistered low- and high-resolution patches of size 64×64 were randomly harvested from CT scans of ten volunteers for training and validation. Five thousand matched pairs of low- and highresolution patches were generated for evaluation after registering CT scan pairs from other ten volunteers. Quantitative comparison shows that predicted high-resolution scans have significantly improved structural similarity index (p < 0.01) with true high-resolution scans as compared to the same metric derived from low-resolution data. Also, trabecular bone microstructural measures such as thickness and network area measures computed from predicted high-resolution CT images showed higher (CCC = [0.90, 0.84]) agreement with the reference measures from true high-resolution scans compared to the same measures derived from low-resolution images (CCC = [0.66, 0.83]).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
然然发布了新的文献求助20
1秒前
是玥玥啊完成签到,获得积分10
1秒前
2秒前
Tonson完成签到,获得积分10
3秒前
达分歧完成签到 ,获得积分10
4秒前
林林完成签到 ,获得积分10
4秒前
跳跃猫咪完成签到 ,获得积分10
4秒前
Ayin完成签到,获得积分10
4秒前
acuis发布了新的文献求助10
5秒前
NNi发布了新的文献求助10
5秒前
5秒前
5秒前
忐忑的果汁完成签到 ,获得积分10
6秒前
6秒前
7秒前
ieeat发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
端正小猫完成签到,获得积分10
8秒前
志摩001完成签到,获得积分10
8秒前
9秒前
九陌发布了新的文献求助10
9秒前
yuilcl完成签到,获得积分10
9秒前
11秒前
JYAQI关注了科研通微信公众号
11秒前
11秒前
cx应助佳佳528采纳,获得10
12秒前
yenom完成签到,获得积分10
12秒前
隐形曼青应助kailan采纳,获得10
12秒前
王第一发布了新的文献求助10
12秒前
月是故乡明完成签到,获得积分10
12秒前
13秒前
yuilcl发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
30完成签到 ,获得积分10
15秒前
乖不如野完成签到,获得积分10
15秒前
15秒前
善良的映之完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400