Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods

颗粒有机碳 卫星 环境科学 微粒 人工神经网络 支持向量机 海洋色 生物泵 人工智能 遥感 碳循环 计算机科学 机器学习 气象学 浮游植物 地质学 地理 化学 工程类 生态学 生态系统 营养物 生物 航空航天工程 有机化学
作者
Huizeng Liu,Qingquan Li,Yan Bai,Chao Yang,Junjie Wang,Qiming Zhou,Shuibo Hu,Tiezhu Shi,Xiaomei Liao
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:256: 112316-112316 被引量:37
标识
DOI:10.1016/j.rse.2021.112316
摘要

Particulate organic carbon (POC) plays vital roles in marine carbon cycle, serving as a part of “biological pump” moving carbon to the deep ocean. The blue-to-green band ratio algorithm is applied operationally to derive POC concentrations in global oceans; it, however, tends to underestimate high values in optically complex waters. With an attempt to develop accurate and robust oceanic POC models, this study aimed to explore machine learning methods in satellite retrieval of POC concentrations. Three machine learning methods, i.e. extreme gradient boosting (XGBoost), support vector machine (SVM) and artificial neural network (ANN), were tested, and the recursive feature elimination (RFE) method was employed to identify sensitive features. Matchups of global in situ POC measurements and Ocean Colour Climate Change Initiative (OC-CCI) products were used to train and evaluate POC models. Results showed that machine learning methods produced obvious better performance than the blue-to-green band ratio algorithm, and XGBoost was the most robust among the tested three machine learning methods. However, the blue-to-green band ratio algorithm still worked well for clear open ocean waters with low POC, and ANN was more effective for optically complex waters with extremely high POC. This study provided globally applicable methods for satellite retrieval of POC concentrations, which should be helpful for studying POC dynamics in global oceans as well as in productive marginal seas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
森林木完成签到,获得积分10
1秒前
1秒前
飞快的雪晴完成签到,获得积分10
2秒前
森ok发布了新的文献求助10
2秒前
lyw发布了新的文献求助10
2秒前
3秒前
3秒前
昂叔的头发丝儿完成签到,获得积分10
3秒前
lulu发布了新的文献求助10
4秒前
4秒前
4秒前
笨笨妙旋发布了新的文献求助10
5秒前
JamesPei应助ffchen111采纳,获得10
5秒前
6秒前
Smiling完成签到 ,获得积分10
6秒前
Iso发布了新的文献求助10
7秒前
吃鱼的猫完成签到,获得积分10
7秒前
8秒前
森ok完成签到,获得积分20
8秒前
9秒前
不懈奋进应助SHY采纳,获得30
10秒前
许哲完成签到,获得积分10
10秒前
11秒前
退而求其次完成签到,获得积分10
13秒前
14秒前
Ferris完成签到,获得积分10
14秒前
鲸鱼打滚发布了新的文献求助10
14秒前
韶冥茗发布了新的文献求助10
15秒前
16秒前
19秒前
简称王完成签到 ,获得积分10
19秒前
汉堡包应助songyuan采纳,获得10
20秒前
liyun发布了新的文献求助10
21秒前
mlm完成签到,获得积分0
21秒前
烟花应助夏夏采纳,获得10
21秒前
韶冥茗完成签到,获得积分10
22秒前
22秒前
lulu完成签到,获得积分10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010128
求助须知:如何正确求助?哪些是违规求助? 3550139
关于积分的说明 11304931
捐赠科研通 3284614
什么是DOI,文献DOI怎么找? 1810733
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451