Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods

颗粒有机碳 卫星 环境科学 微粒 人工神经网络 支持向量机 海洋色 生物泵 人工智能 遥感 碳循环 计算机科学 机器学习 气象学 浮游植物 地质学 地理 化学 工程类 生态学 生态系统 营养物 生物 航空航天工程 有机化学
作者
Huizeng Liu,Qingquan Li,Yan Bai,Chao Yang,Junjie Wang,Qiming Zhou,Shuibo Hu,Tiezhu Shi,Xiaomei Liao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112316-112316 被引量:37
标识
DOI:10.1016/j.rse.2021.112316
摘要

Particulate organic carbon (POC) plays vital roles in marine carbon cycle, serving as a part of “biological pump” moving carbon to the deep ocean. The blue-to-green band ratio algorithm is applied operationally to derive POC concentrations in global oceans; it, however, tends to underestimate high values in optically complex waters. With an attempt to develop accurate and robust oceanic POC models, this study aimed to explore machine learning methods in satellite retrieval of POC concentrations. Three machine learning methods, i.e. extreme gradient boosting (XGBoost), support vector machine (SVM) and artificial neural network (ANN), were tested, and the recursive feature elimination (RFE) method was employed to identify sensitive features. Matchups of global in situ POC measurements and Ocean Colour Climate Change Initiative (OC-CCI) products were used to train and evaluate POC models. Results showed that machine learning methods produced obvious better performance than the blue-to-green band ratio algorithm, and XGBoost was the most robust among the tested three machine learning methods. However, the blue-to-green band ratio algorithm still worked well for clear open ocean waters with low POC, and ANN was more effective for optically complex waters with extremely high POC. This study provided globally applicable methods for satellite retrieval of POC concentrations, which should be helpful for studying POC dynamics in global oceans as well as in productive marginal seas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助快乐的晓刚采纳,获得10
1秒前
2秒前
--发布了新的文献求助10
3秒前
NZH关闭了NZH文献求助
3秒前
5秒前
佳佳发布了新的文献求助10
5秒前
英姑应助jj采纳,获得10
7秒前
Renee应助Lion采纳,获得10
10秒前
完美世界应助陈隆采纳,获得10
11秒前
11秒前
xiaotianli完成签到,获得积分10
12秒前
14秒前
jj完成签到,获得积分10
15秒前
衬衣完成签到,获得积分10
15秒前
李健应助快乐的晓刚采纳,获得10
16秒前
drlq2022发布了新的文献求助10
18秒前
21秒前
星辰大海应助好了采纳,获得10
23秒前
白羊完成签到,获得积分10
24秒前
25秒前
25秒前
sxy完成签到,获得积分20
27秒前
shain发布了新的文献求助10
27秒前
合适的不言应助刘刘采纳,获得10
29秒前
30秒前
迅速无敌发布了新的文献求助10
30秒前
田様应助落叶解三秋采纳,获得10
34秒前
7t1n9发布了新的文献求助10
35秒前
小蘑菇应助伶俐鹤轩采纳,获得10
35秒前
cc2713206完成签到,获得积分0
36秒前
Tigher完成签到,获得积分10
36秒前
37秒前
38秒前
CodeCraft应助快乐的晓刚采纳,获得10
40秒前
41秒前
伶俐鹤轩完成签到,获得积分10
41秒前
sam发布了新的文献求助10
41秒前
王小丹发布了新的文献求助10
43秒前
drlq2022完成签到,获得积分10
44秒前
Cullen发布了新的文献求助10
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094