Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals

莲花效应 润湿 材料科学 磁流变液 花瓣 莲花 磁场 表面光洁度 复合材料 接触角 弹性体 纳米技术 化学 物理 植物 生物 有机化学 量子力学 原材料
作者
Shiwei Chen,Minghui Zhu,Yuanhao Zhang,Shuai Dong,Xiaojie Wang
出处
期刊:Langmuir [American Chemical Society]
卷期号:37 (7): 2312-2321 被引量:52
标识
DOI:10.1021/acs.langmuir.0c03122
摘要

In nature, many plants have evolved various wettability surfaces to survive and thrive in diverse environments. For example, the superhydrophobic surface of lotus can keep itself clean, while the rose petals can retain droplets for a long time. The former is referred to the "lotus effect," and the latter is known as the "rose petal effect." This research proposes a method to fabricate magnetic-responsive superhydrophobic magnetorheological elastomers (MREs) which could reversibly and instantly transition their surface wetting state between the "lotus effect" and the "rose petal effect." These surfaces with controllable wettability could find applications in the manipulation of liquids in biological and chemical systems. The MREs are cured by applying a uniform magnetic field to form "mountain-like" microstructures on their surfaces. This initial surface is rough and exhibits the lotus leaf effect. Because of the nonuniform magnetically induced deformation, the surface micromorphology and roughness can be altered by an applied magnetic field. The state of water droplets on its surface is changed from the Wenzel state to the Cassie-Baxter (CB) state. Therefore, the proposed MRE surface could switch their dynamic wetting features between the "rose petals" and "lotus leaves" via a magnetic field. An experimental platform for the wetting features of MRE surfaces is established to characterize the dynamic behaviors of water drops on MREs under a magnetic field. A magneto-mechanic coupled model is proposed to interpret how the magnetic field influences the MRE surface as well as the droplet movement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang发布了新的文献求助10
刚刚
niuniu完成签到,获得积分10
1秒前
HQQ完成签到,获得积分20
1秒前
YMH完成签到 ,获得积分10
2秒前
喜悦惜寒完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
yitata完成签到,获得积分10
5秒前
可爱的函函应助NZH采纳,获得10
5秒前
Ava应助罗汉采纳,获得10
6秒前
狐八道发布了新的文献求助10
8秒前
9秒前
9秒前
尼斯卡发布了新的文献求助10
11秒前
li发布了新的文献求助10
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
冬冬完成签到,获得积分10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
reflux应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得20
12秒前
苏卿应助科研通管家采纳,获得10
13秒前
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
三哥应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
程希应助iuuuuu采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331