Spectral-Spatial Genetic Algorithm-Based Unsupervised Band Selection for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 计算机科学 人工智能 选择(遗传算法) 上下文图像分类 遗传算法 图像(数学) 统计分类 机器学习 遥感 地质学
作者
Haishi Zhao,Lorenzo Bruzzone,Renchu Guan,Fengfeng Zhou,Chen Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9616-9632 被引量:34
标识
DOI:10.1109/tgrs.2020.3047223
摘要

Band selection (BS) can mitigate the "curse of dimensionality" problem and improve the performance of hyperspectral image (HSI) classification. Genetic algorithms (GAs) have been applied to the task of hyperspectral BS showing significant advantages compared with other literature methods. However, the traditional GAs-based methods often select sets of bands having residual redundancy due to the large search space related to hyperspectral BS and the limitation of premature convergence in GAs. Moreover, existing GAs-based methods often are supervised, and that needs a large number of labeled samples to compute the fitness value for assessing the quality of selected bands. In this article, an unsupervised BS approach based on an improved GA is proposed. A fitness function based on the fisher score combined with superpixel is designed for evaluating the discriminability of band subsets considering both spectral and spatial information. Then, modified genetic operations are constructed to restrain the search space and reduce the redundancy of selected bands. The performance of the proposed spectral-spatial GA-based BS method is evaluated on three HSIs. The experimental results demonstrate that the proposed method is superior to the traditional GA-based method and seven state-of-the-art unsupervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
核桃应助淀粉采纳,获得10
1秒前
1秒前
哲哥发布了新的文献求助10
2秒前
2秒前
千程发布了新的文献求助10
2秒前
3秒前
xxddw发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Ziyi完成签到 ,获得积分10
4秒前
小席完成签到,获得积分10
4秒前
5秒前
5秒前
Sharif318发布了新的文献求助10
5秒前
KSAcc完成签到,获得积分10
7秒前
你的样子发布了新的文献求助30
7秒前
8秒前
ta发布了新的文献求助10
8秒前
小席发布了新的文献求助10
8秒前
8秒前
白斯特发布了新的文献求助10
9秒前
1259671587完成签到,获得积分10
10秒前
11秒前
11秒前
LLQ完成签到,获得积分10
11秒前
汉堡包应助邢凡柔采纳,获得10
11秒前
现代发布了新的文献求助10
12秒前
hellohql完成签到 ,获得积分10
13秒前
佳佳应助jiayan111采纳,获得10
14秒前
领导范儿应助斑马还没睡采纳,获得10
14秒前
李健的小迷弟应助yxy采纳,获得10
15秒前
无花果应助神经小丸子采纳,获得10
16秒前
hellohql关注了科研通微信公众号
16秒前
小石头发布了新的文献求助10
16秒前
16秒前
动听秋灵完成签到,获得积分20
16秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959583
求助须知:如何正确求助?哪些是违规求助? 3505844
关于积分的说明 11126416
捐赠科研通 3237765
什么是DOI,文献DOI怎么找? 1789326
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802963