Spectral-Spatial Genetic Algorithm-Based Unsupervised Band Selection for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 计算机科学 人工智能 选择(遗传算法) 上下文图像分类 遗传算法 图像(数学) 统计分类 机器学习 遥感 地质学
作者
Haishi Zhao,Lorenzo Bruzzone,Renchu Guan,Fengfeng Zhou,Chen Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9616-9632 被引量:48
标识
DOI:10.1109/tgrs.2020.3047223
摘要

Band selection (BS) can mitigate the "curse of dimensionality" problem and improve the performance of hyperspectral image (HSI) classification. Genetic algorithms (GAs) have been applied to the task of hyperspectral BS showing significant advantages compared with other literature methods. However, the traditional GAs-based methods often select sets of bands having residual redundancy due to the large search space related to hyperspectral BS and the limitation of premature convergence in GAs. Moreover, existing GAs-based methods often are supervised, and that needs a large number of labeled samples to compute the fitness value for assessing the quality of selected bands. In this article, an unsupervised BS approach based on an improved GA is proposed. A fitness function based on the fisher score combined with superpixel is designed for evaluating the discriminability of band subsets considering both spectral and spatial information. Then, modified genetic operations are constructed to restrain the search space and reduce the redundancy of selected bands. The performance of the proposed spectral-spatial GA-based BS method is evaluated on three HSIs. The experimental results demonstrate that the proposed method is superior to the traditional GA-based method and seven state-of-the-art unsupervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助yw采纳,获得10
刚刚
刚刚
大模型应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
刚刚
Akim应助科研通管家采纳,获得30
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
3秒前
初眠发布了新的文献求助10
3秒前
Foch发布了新的文献求助10
4秒前
4秒前
4秒前
6秒前
6秒前
7秒前
7秒前
李昕123发布了新的文献求助10
7秒前
维维逗奶完成签到,获得积分10
8秒前
9秒前
科研通AI6应助初眠采纳,获得10
9秒前
Akim应助懵懂的小夏采纳,获得20
11秒前
11秒前
橘子发布了新的文献求助10
11秒前
奋斗青发布了新的文献求助10
11秒前
12秒前
鲤鱼凌波发布了新的文献求助10
12秒前
科研通AI2S应助Juliette采纳,获得10
13秒前
13秒前
14秒前
852应助哈哈哈采纳,获得10
15秒前
霜降发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439