清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spectral-Spatial Genetic Algorithm-Based Unsupervised Band Selection for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 计算机科学 人工智能 选择(遗传算法) 上下文图像分类 遗传算法 图像(数学) 统计分类 机器学习 遥感 地质学
作者
Haishi Zhao,Lorenzo Bruzzone,Renchu Guan,Fengfeng Zhou,Chen Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9616-9632 被引量:48
标识
DOI:10.1109/tgrs.2020.3047223
摘要

Band selection (BS) can mitigate the "curse of dimensionality" problem and improve the performance of hyperspectral image (HSI) classification. Genetic algorithms (GAs) have been applied to the task of hyperspectral BS showing significant advantages compared with other literature methods. However, the traditional GAs-based methods often select sets of bands having residual redundancy due to the large search space related to hyperspectral BS and the limitation of premature convergence in GAs. Moreover, existing GAs-based methods often are supervised, and that needs a large number of labeled samples to compute the fitness value for assessing the quality of selected bands. In this article, an unsupervised BS approach based on an improved GA is proposed. A fitness function based on the fisher score combined with superpixel is designed for evaluating the discriminability of band subsets considering both spectral and spatial information. Then, modified genetic operations are constructed to restrain the search space and reduce the redundancy of selected bands. The performance of the proposed spectral-spatial GA-based BS method is evaluated on three HSIs. The experimental results demonstrate that the proposed method is superior to the traditional GA-based method and seven state-of-the-art unsupervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
souther完成签到,获得积分0
10秒前
SciGPT应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
14秒前
雪山飞龙发布了新的文献求助10
17秒前
sage_kakarotto完成签到 ,获得积分10
20秒前
大喜喜发布了新的文献求助200
31秒前
AA完成签到 ,获得积分10
37秒前
雪山飞龙发布了新的文献求助10
39秒前
51秒前
ceeray23发布了新的文献求助20
56秒前
发呆员发布了新的文献求助10
1分钟前
旅行者完成签到,获得积分10
1分钟前
TXZ06发布了新的文献求助10
1分钟前
科研通AI6应助发呆员采纳,获得10
1分钟前
lululemontree应助大刘采纳,获得30
1分钟前
1分钟前
大喜喜发布了新的文献求助10
2分钟前
LinglongCai完成签到 ,获得积分10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
雪山飞龙完成签到,获得积分10
2分钟前
barry发布了新的文献求助10
3分钟前
ceeray23发布了新的文献求助20
3分钟前
tt完成签到,获得积分10
3分钟前
发呆员发布了新的文献求助10
3分钟前
科研通AI2S应助发呆员采纳,获得10
3分钟前
3分钟前
白日睡觉发布了新的文献求助10
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
英俊的铭应助白日睡觉采纳,获得10
3分钟前
lovelife完成签到,获得积分10
4分钟前
大喜喜发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4613925
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531