Spectral-Spatial Genetic Algorithm-Based Unsupervised Band Selection for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 计算机科学 人工智能 选择(遗传算法) 上下文图像分类 遗传算法 图像(数学) 统计分类 机器学习 遥感 地质学
作者
Haishi Zhao,Lorenzo Bruzzone,Renchu Guan,Fengfeng Zhou,Chen Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9616-9632 被引量:48
标识
DOI:10.1109/tgrs.2020.3047223
摘要

Band selection (BS) can mitigate the "curse of dimensionality" problem and improve the performance of hyperspectral image (HSI) classification. Genetic algorithms (GAs) have been applied to the task of hyperspectral BS showing significant advantages compared with other literature methods. However, the traditional GAs-based methods often select sets of bands having residual redundancy due to the large search space related to hyperspectral BS and the limitation of premature convergence in GAs. Moreover, existing GAs-based methods often are supervised, and that needs a large number of labeled samples to compute the fitness value for assessing the quality of selected bands. In this article, an unsupervised BS approach based on an improved GA is proposed. A fitness function based on the fisher score combined with superpixel is designed for evaluating the discriminability of band subsets considering both spectral and spatial information. Then, modified genetic operations are constructed to restrain the search space and reduce the redundancy of selected bands. The performance of the proposed spectral-spatial GA-based BS method is evaluated on three HSIs. The experimental results demonstrate that the proposed method is superior to the traditional GA-based method and seven state-of-the-art unsupervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
埋头赶路应助小熊硬唐采纳,获得10
刚刚
李42发布了新的文献求助10
刚刚
Akim应助热心市民余先生采纳,获得10
刚刚
买了束花完成签到,获得积分10
1秒前
茹静发布了新的文献求助20
1秒前
大个应助啦啦啦采纳,获得10
2秒前
jjzzSherri完成签到 ,获得积分10
4秒前
4秒前
shiqi发布了新的文献求助10
4秒前
Akim应助星星采纳,获得10
4秒前
5秒前
de铭完成签到,获得积分10
5秒前
11111111111完成签到,获得积分10
6秒前
888发布了新的文献求助10
7秒前
酷波er应助Lavender采纳,获得10
7秒前
小悟空的美好年华完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
谈伟发布了新的文献求助10
9秒前
浮游应助sl采纳,获得10
9秒前
Criminology34应助LeichterL采纳,获得10
10秒前
Twonej应助奥利奥采纳,获得30
10秒前
zuducyow完成签到,获得积分10
11秒前
冷傲雪糕完成签到 ,获得积分10
11秒前
11秒前
安详世平发布了新的文献求助10
12秒前
活力夜白发布了新的文献求助10
12秒前
5af45f发布了新的文献求助10
12秒前
12秒前
13秒前
爱学习的婷完成签到 ,获得积分10
14秒前
14秒前
15秒前
安详世平完成签到,获得积分10
16秒前
jasmine完成签到,获得积分10
17秒前
gefan发布了新的文献求助10
17秒前
蓝天应助健忘向露采纳,获得10
18秒前
Akim应助888采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642999
求助须知:如何正确求助?哪些是违规求助? 4760428
关于积分的说明 15019750
捐赠科研通 4801483
什么是DOI,文献DOI怎么找? 2566801
邀请新用户注册赠送积分活动 1524658
关于科研通互助平台的介绍 1484255