Spectral-Spatial Genetic Algorithm-Based Unsupervised Band Selection for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 冗余(工程) 计算机科学 人工智能 维数之咒 适应度函数 光谱带 遗传算法 早熟收敛 渡线 机器学习 遥感 地质学 操作系统
作者
Haishi Zhao,Lorenzo Bruzzone,Renchu Guan,Fengfeng Zhou,Chen Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9616-9632 被引量:27
标识
DOI:10.1109/tgrs.2020.3047223
摘要

Band selection (BS) can mitigate the “curse of dimensionality” problem and improve the performance of hyperspectral image (HSI) classification. Genetic algorithms (GAs) have been applied to the task of hyperspectral BS showing significant advantages compared with other literature methods. However, the traditional GAs-based methods often select sets of bands having residual redundancy due to the large search space related to hyperspectral BS and the limitation of premature convergence in GAs. Moreover, existing GAs-based methods often are supervised, and that needs a large number of labeled samples to compute the fitness value for assessing the quality of selected bands. In this article, an unsupervised BS approach based on an improved GA is proposed. A fitness function based on the fisher score combined with superpixel is designed for evaluating the discriminability of band subsets considering both spectral and spatial information. Then, modified genetic operations are constructed to restrain the search space and reduce the redundancy of selected bands. The performance of the proposed spectral-spatial GA-based BS method is evaluated on three HSIs. The experimental results demonstrate that the proposed method is superior to the traditional GA-based method and seven state-of-the-art unsupervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七凌发布了新的文献求助10
刚刚
flora给Goblin的求助进行了留言
刚刚
香蕉觅云应助SQDHZJ采纳,获得10
1秒前
共享精神应助无限火龙果采纳,获得10
2秒前
3秒前
咖啡豆发布了新的文献求助10
4秒前
情怀应助苏满天采纳,获得10
4秒前
小油条完成签到,获得积分10
4秒前
5秒前
8秒前
8秒前
七凌完成签到,获得积分10
8秒前
11秒前
12秒前
13秒前
13秒前
爆米花应助Summer采纳,获得10
14秒前
SQDHZJ发布了新的文献求助10
16秒前
风吟完成签到,获得积分10
16秒前
上官若男应助姬妙花采纳,获得30
17秒前
武文信发布了新的文献求助10
18秒前
Yfreya发布了新的文献求助10
18秒前
18秒前
20秒前
fifty完成签到 ,获得积分10
21秒前
22秒前
22秒前
彩色的绣连应助SQDHZJ采纳,获得10
23秒前
23秒前
24秒前
26秒前
27秒前
宋晓蓝发布了新的文献求助10
27秒前
27秒前
ggg发布了新的文献求助10
28秒前
28秒前
追寻如豹发布了新的文献求助10
29秒前
CodeCraft应助风中的语蝶采纳,获得10
32秒前
Ephemeral完成签到 ,获得积分10
32秒前
风吟发布了新的文献求助10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161699
求助须知:如何正确求助?哪些是违规求助? 2812944
关于积分的说明 7897948
捐赠科研通 2471893
什么是DOI,文献DOI怎么找? 1316222
科研通“疑难数据库(出版商)”最低求助积分说明 631263
版权声明 602129