Chapter 5 Single-Cell C4 Photosynthesis in Aquatic Plants
光合作用
生物
植物
环境科学
作者
George Bowes
出处
期刊:Advances in photosynthesis and respiration日期:2010-01-01卷期号:: 63-80被引量:14
标识
DOI:10.1007/978-90-481-9407-0_5
摘要
In water with low free [CO2] a common strategy of submersed plants is to use HCO 3 − , but some species utilize a C4 photosynthetic system that surprisingly lacks the Kranz dual-cell compartmentation of most terrestrial C4 plants. Instead, the C4 and C3 cycles are in the same cell, with phosphoenolpyruvate carboxylase (PEPC) and ribulose bisphosphate carboxylase–oxygenase (rubisco) sequestered in the cytosol and chloroplasts, respectively. Malate decarboxylation by NADP malic enzyme (NADP-ME) in the chloroplasts produces a chloroplastic CO2 concentrating mechanism (CCM). It occurs in the submersed monocots Hydrilla verticillata and Egeria densa (Hydrocharitaceae), and in these species it is facultative because low [CO2] induces a metabolic shift in the leaves from C3 to single-cell C4 photosynthesis. Submersed leaves of other species also perform single-cell C4 photosynthesis, including Sagittaria subulata (Alismataceae), the grasses Orcuttia californica and O. viscida (Poaceae), and the sedge Eleocharis acicularis. A marine macroalga (Udotea flabellum, Chlorophyta) and a diatom (Thalassiosira weissflogii) likewise show evidence of its occurrence, so it is not restricted to higher plants. The change from C3 to C4 photosynthetic gas exchange and pulse-chase characteristics is well documented in Hydrilla, along with enzyme kinetics and localization; high internal [CO2], and improved growth. Multiple isoforms of PEPC, NADP-ME and pyruvate orthophosphate dikinase (PPDK) exist in Hydrilla and Egeria, but specific forms, including hvpepc4, hvme1 and hvppdk1are up-regulated in the C4 leaves of Hydrilla and encode proteins with C4 photosynthetic characteristics. Interestingly, the photosynthetic hvpepc4 differs from its terrestrial C4 counterparts in lacking a “C4-signature” serine near the carboxy terminus. The C3 leaf must maximize CO2 conductance to rubisco, but as the C4 system is induced, chloroplast conductance is probably minimized to reduce leakage from the CCM. Further study of the facultative system of Hydrilla could determine if down-regulation of chloroplast-envelope aquaporins is involved in reducing CO2 conductance. Hydrilla and Egeria are in the ancient Hydrocharitaceae family, and can give insights into early C4 photosynthesis, which likely originated in water prior to its advent on land.