已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards Unravelling the Source of Cathode-Activated Corrosion Filaments Formed on Corroding Mg Alloy Surfaces

腐蚀 材料科学 金属间化合物 贵金属 溶解 阴极 阴极保护 合金 电化学 杂质 金属 冶金 阳极 极化(电化学) 化学工程 化学 电极 有机化学 物理化学 工程类
作者
Joseph R. Kish,Zachary P. Cano,Joseph R. McDermid
出处
期刊:Meeting abstracts 卷期号:MA2015-02 (13): 658-658
标识
DOI:10.1149/ma2015-02/13/658
摘要

Reported scanning vibrating probe (SVP) measurements have shown that the localized corrosion filaments formed on dissolving Mg and AZ31B (Mg-3Al-1Zn-0.3Mn) become activated cathodes following their formation. These cathodicly-activated filaments galvanically couple with intensely anodic regions at the heads of the corrosion filaments which subsequently drives the lateral propagation of the corrosion filament across the exposed surface. The mechanism by which the cathode (H 2 evolution reaction) is enhanced on corroded Mg or Mg alloys remains elusive. Proposed mechanisms include: (i) enrichment of noble metal constituents such as Fe impurity particles (for pure Mg) or Al-Mn intermetallic particles (for AZ31B) within the corroded filaments, (ii) the release and subsequent dissolution of metallic Mg “chunks” and (iii) formation of a significantly roughened surface film. Our recently reported TEM examination of the corrosion filaments formed on AZ31B has challenged the role played by the enrichment of Al-Mn intermetallic particles in cathodic activation whilst raising the possibility that the formation of a noble Zn-enriched layer (relative to Mg) at the alloy surface may be playing a key role in cathode activation. To interrogate the proposed noble Zn-enriched surface layer hypothesis for cathodic activation in more detail, a study of the localized corrosion of a Zn-free AM30 (Mg-3Al-0.4Mn) surface, complete with site-specific analyses of the surface films that formed, was conducted. The localized corrosion behavior was characterized by making conventional electrochemical polarization measurements along with SVP measurements in a near-neutral 0.05 M NaCl solution. Focused ion beam (FIB)-prepared thin-foil cross-sections of the surface films formed after exposure were examined using TEM and associated techniques. A cryogenically-cooled stage (95 K) was used to minimize electron beam-induced damage to the foils during electron beam irradiation. The films were examined using bright field (BF) imaging along with selected area diffraction (SAD). The films were also characterized via the scanning TEM (STEM) mode, with a high angle annular dark field (HAADF) detector utilized for imaging and energy dispersive spectroscopy (EDS) to determine the composition of various microstructural features. Microstructural features of the underlying AM30 metal were also characterized using the same thin-foil cross-sections. The SVP measurements revealed that localized corrosion was indeed of the filament-like mode and the surface regions consumed by the propagation of the corrosion filaments acted as local cathodes. It was also revealed that the cathodic current density was diminished above a defined region of a filament with increasing exposure time (Figure 1a). Although the surface coverage of the cathodic corrosion filaments progressively increased with exposure time, the proportionately diminishing cathodic current density from a defined region of filaments resulted in relatively constant integrated cathode and anode currents with respect to exposure time. This behavior correlated well with the open-circuit potential, corrosion current density and cathode current density for,each alloy as measured by potentiodynamic polarization after 1 h and 24 h. It was observed that the freshly formed corrosion filaments were primarily MgO, whereas the aged corrosion filaments became partially hydrated; containing a detectable proportion of Mg(OH) 2 . The Al-Mn intermetallic particles, identified as Al 8 Mn 5 , were present in both the intact film and the corrosion filaments: thus challenging the role played by these intermetallic particles as “primary” cathode activation enablers. Al-enrichment was detected at the aged corrosion filament/metal interface, but not at the freshly-formed corrosion filament/metal interface: thus challenging the role played by noble solute enrichment as “primary” cathode activation enablers. In view of our AZ31B results, the noble Zn-enriched layer is proposed to act as a “secondary” cathodic activation enabler, implying that Zn alloying does indeed have a detrimental effect on localized filiform-like corrosion susceptibility of Mg-Al-Zn alloys. As for the “primary” enabler of the cathodic activation, it is proposed that it is the film itself with the controlling chemical or physical feature yet to be unambiguously identified. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww发布了新的文献求助10
1秒前
2秒前
adinike完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
8秒前
pct发布了新的文献求助10
8秒前
调研昵称发布了新的文献求助10
9秒前
佳佳发布了新的文献求助30
9秒前
10秒前
杨哈哈发布了新的文献求助10
11秒前
15秒前
16秒前
无名完成签到 ,获得积分10
17秒前
19秒前
20秒前
21秒前
22秒前
yanxuhuan完成签到 ,获得积分10
24秒前
yarkye完成签到,获得积分10
25秒前
26秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
我是老大应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
31秒前
ww发布了新的文献求助10
32秒前
慕青应助虚心的不二采纳,获得10
35秒前
36秒前
36秒前
南桥发布了新的文献求助30
36秒前
38秒前
枇杷完成签到 ,获得积分10
39秒前
小蘑菇应助pct采纳,获得10
39秒前
喵呜啦啦啦啦完成签到,获得积分10
40秒前
orixero应助杨哈哈采纳,获得10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314278
求助须知:如何正确求助?哪些是违规求助? 2946569
关于积分的说明 8530780
捐赠科研通 2622286
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838