Assessing short-range membrane–colloid interactions using surface energetics

DLVO理论 胶体 范德瓦尔斯力 相互作用能 化学物理 表面能 化学 物理化学 分子 有机化学 生物化学
作者
Jonathan A. Brant
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:203 (1-2): 257-273 被引量:439
标识
DOI:10.1016/s0376-7388(02)00014-5
摘要

The contribution of acid–base (AB) (polar) interactions to the total interaction energy between membranes and colloids was investigated. The surface energetics of several membranes and colloids were evaluated using the Lifshitz–van der Waals acid-base approach. This provides the van der Waals (LW) and polar interaction energies between various surfaces from measurements of contact angles of different probe liquids on these surfaces. In addition, the surface potentials of the membranes and colloids were determined using electrokinetic measurements, yielding the electrostatic (EL) interaction between these surfaces. The three interaction energy components (LW, EL, and AB) were combined according to the extended Derjaguin–Landau–Verwey–Overbeek (extended DLVO or XDLVO) approach to evaluate membrane–colloid interaction energies. Predictions of interaction energy based on the XDLVO approach were compared to the corresponding predictions from the classical DLVO theory. For all the membrane–colloid combinations studied, the DLVO potentials were quite similar. However, inclusion of AB interactions resulted in a substantially different (qualitative and quantitative) prediction of short-range (separation distances <5 nm) interaction energies for several of the membrane–colloid combinations investigated. Finally, all of the membranes studied were found to have substantially low surface energies compared to the colloids and the interaction energy between the membranes and colloids was primarily dictated by the surface energies of the colloids. Fouling experiments for a membrane and three colloids supported the fouling trends predicted by the XDLVO approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助10
刚刚
王大壮完成签到,获得积分10
刚刚
青鸟飞鱼完成签到,获得积分10
1秒前
绝世大魔王完成签到 ,获得积分10
1秒前
科研通AI2S应助马到成功采纳,获得10
2秒前
2秒前
3秒前
4秒前
白鹿丸完成签到,获得积分10
6秒前
寻光人发布了新的文献求助10
7秒前
7秒前
慕青应助加菲丰丰采纳,获得30
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
vousme完成签到 ,获得积分10
9秒前
orixero应助ding采纳,获得10
10秒前
知知完成签到,获得积分10
12秒前
科研菜鸟完成签到,获得积分10
12秒前
陆菱柒发布了新的文献求助10
13秒前
15秒前
zhu完成签到,获得积分10
16秒前
Jasper应助迷人的勒采纳,获得10
16秒前
17秒前
Kkkkk完成签到,获得积分10
18秒前
18秒前
TYMY应助聪明贞采纳,获得20
18秒前
LFY完成签到,获得积分10
19秒前
19秒前
诚心的刘发布了新的文献求助10
19秒前
夙与发布了新的文献求助10
20秒前
清脆雪巧发布了新的文献求助10
21秒前
Kkkkk发布了新的文献求助10
22秒前
22秒前
breeze发布了新的文献求助50
24秒前
26秒前
uu发布了新的文献求助10
27秒前
27秒前
28秒前
生动又夏完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425466
求助须知:如何正确求助?哪些是违规求助? 4539502
关于积分的说明 14168309
捐赠科研通 4457101
什么是DOI,文献DOI怎么找? 2444422
邀请新用户注册赠送积分活动 1435337
关于科研通互助平台的介绍 1412740