Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products

成核 纳米晶 化学 胶体 堆积 金属 纳米技术 动能 化学物理 材料科学 物理化学 有机化学 物理 量子力学
作者
Younan Xia,Xiaohu Xia,Hsin‐Chieh Peng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:137 (25): 7947-7966 被引量:761
标识
DOI:10.1021/jacs.5b04641
摘要

This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
5秒前
科研通AI2S应助大胆香彤采纳,获得10
5秒前
5秒前
清风明月发布了新的文献求助10
6秒前
小糖豆发布了新的文献求助10
7秒前
tong完成签到,获得积分10
7秒前
jxy09156完成签到,获得积分10
7秒前
8秒前
韩索罗完成签到 ,获得积分10
8秒前
尊敬柏柳发布了新的文献求助30
8秒前
朝朝完成签到,获得积分20
9秒前
9秒前
银河苏打完成签到,获得积分10
10秒前
JOFM完成签到,获得积分10
10秒前
朝朝发布了新的文献求助10
12秒前
银河苏打发布了新的文献求助10
13秒前
jxy09156发布了新的文献求助10
14秒前
烤地瓜发布了新的文献求助10
15秒前
可爱萨摩耶完成签到 ,获得积分10
16秒前
16秒前
18秒前
请叫我风吹麦浪应助Chem34采纳,获得10
18秒前
因为某篇文献给因为某篇文献的求助进行了留言
19秒前
YifanWang应助银河苏打采纳,获得10
19秒前
20秒前
czb完成签到,获得积分10
20秒前
22秒前
22秒前
你的女孩TT完成签到,获得积分10
22秒前
落汤鸡完成签到,获得积分10
22秒前
悦耳傲旋发布了新的文献求助10
22秒前
Ganlou应助zhangjian采纳,获得30
22秒前
czb发布了新的文献求助10
23秒前
顺利发布了新的文献求助10
25秒前
炙热怀蝶发布了新的文献求助10
27秒前
不不鱼发布了新的文献求助20
27秒前
qwa发布了新的文献求助10
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309867
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512407
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430834
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490