Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products

成核 纳米晶 化学 胶体 堆积 金属 纳米技术 动能 化学物理 材料科学 物理化学 有机化学 物理 量子力学
作者
Younan Xia,Xiaohu Xia,Hsin‐Chieh Peng
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:137 (25): 7947-7966 被引量:761
标识
DOI:10.1021/jacs.5b04641
摘要

This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ming发布了新的文献求助30
刚刚
1秒前
现代大神完成签到,获得积分10
1秒前
标致寒香完成签到,获得积分10
2秒前
尤韩完成签到,获得积分10
2秒前
3秒前
Zjj发布了新的文献求助10
3秒前
CodeCraft应助jiaoshaa采纳,获得10
4秒前
zmx123123完成签到,获得积分10
4秒前
Hello应助南雪既白采纳,获得10
4秒前
达蒙璃完成签到 ,获得积分10
5秒前
阳光的紫丝完成签到 ,获得积分10
7秒前
loga80完成签到,获得积分0
9秒前
星星完成签到,获得积分10
13秒前
18秒前
高高发布了新的文献求助10
21秒前
起风了完成签到 ,获得积分10
24秒前
Orange应助无语大王采纳,获得10
26秒前
27秒前
CodeCraft应助zmx123123采纳,获得10
31秒前
顾矜应助东方立轩采纳,获得10
33秒前
35秒前
36秒前
FCL完成签到,获得积分10
37秒前
翠甜翠甜大西瓜完成签到 ,获得积分10
37秒前
DYH完成签到,获得积分10
37秒前
39秒前
任性雁露发布了新的文献求助30
41秒前
杰king完成签到,获得积分20
41秒前
cc2713206完成签到,获得积分10
41秒前
42秒前
小马甲应助AdoreU采纳,获得10
43秒前
Lucas应助壹拾柒采纳,获得10
43秒前
wang完成签到 ,获得积分10
44秒前
45秒前
Ma完成签到,获得积分10
48秒前
49秒前
zmx123123发布了新的文献求助10
49秒前
49秒前
南雪既白发布了新的文献求助10
51秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
Preparation and Characterization of Five Amino-Modified Hyper-Crosslinked Polymers and Performance Evaluation for Aged Transformer Oil Reclamation 700
Operative Techniques in Pediatric Orthopaedic Surgery 510
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2931425
求助须知:如何正确求助?哪些是违规求助? 2584509
关于积分的说明 6966804
捐赠科研通 2231999
什么是DOI,文献DOI怎么找? 1185466
版权声明 589667
科研通“疑难数据库(出版商)”最低求助积分说明 580502