Bayesian modeling of dynamic scenes for object detection

人工智能 计算机科学 像素 目标检测 模式识别(心理学) 计算机视觉 背景(考古学) 贝叶斯概率 前景检测 古生物学 生物
作者
Yaser Sheikh,Mubarak Shah
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 1778-1792 被引量:647
标识
DOI:10.1109/tpami.2005.213
摘要

Accurate detection of moving objects is an important precursor to stable tracking or recognition. In this paper, we present an object detection scheme that has three innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic backgrounds. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, multimodal spatial uncertainties and complex dependencies between the domain (location) and range (color) are directly modeled. We propose a model of the background as a single probability density. Second, temporal persistence is proposed as a detection criterion. Unlike previous approaches to object detection which detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking) since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the proposed method is performed and presented on a diverse set of dynamic scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
firsucia完成签到,获得积分10
刚刚
GXY完成签到,获得积分10
刚刚
犹豫溪灵完成签到,获得积分10
1秒前
猛男发布了新的文献求助10
1秒前
清茶一抹发布了新的文献求助10
1秒前
霍凡白完成签到,获得积分10
3秒前
CipherSage应助sfaweggfh采纳,获得10
4秒前
4秒前
大脑袋应助firsucia采纳,获得30
5秒前
CipherSage应助辣辣莫吉托采纳,获得10
6秒前
科研通AI5应助不远采纳,获得10
9秒前
11秒前
Aira完成签到,获得积分10
11秒前
Vigour发布了新的文献求助30
11秒前
FashionBoy应助77采纳,获得10
11秒前
嗯嗯嗯完成签到,获得积分10
12秒前
共享精神应助Yilam采纳,获得10
12秒前
虚幻泽洋完成签到,获得积分10
12秒前
荣一完成签到,获得积分10
13秒前
14秒前
豆豆完成签到,获得积分10
15秒前
zgy1106完成签到,获得积分10
16秒前
科研小民工应助浮浮世世采纳,获得60
16秒前
16秒前
18秒前
jasmine发布了新的文献求助10
18秒前
19秒前
19秒前
小下完成签到,获得积分10
22秒前
英姑应助踟蹰采纳,获得10
22秒前
22秒前
Jiang发布了新的文献求助30
22秒前
丘比特应助lza采纳,获得10
23秒前
24秒前
nmgfln发布了新的文献求助10
24秒前
24秒前
直率的乐萱完成签到 ,获得积分10
27秒前
alex完成签到,获得积分20
28秒前
小猪佩奇发布了新的文献求助10
29秒前
lilli完成签到,获得积分0
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557373
求助须知:如何正确求助?哪些是违规求助? 3132507
关于积分的说明 9397818
捐赠科研通 2832685
什么是DOI,文献DOI怎么找? 1556954
邀请新用户注册赠送积分活动 727016
科研通“疑难数据库(出版商)”最低求助积分说明 716184