Lightweight FISTA-Inspired Sparse Reconstruction Network for mmW 3-D Holography

计算机科学 数字全息术 算法 深度学习 人工神经网络 迭代重建 全息术 人工智能 光学 物理
作者
Mou Wang,Shunjun Wei,Jiadian Liang,Shan Liu,Xiaoling Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:11
标识
DOI:10.1109/tgrs.2021.3093307
摘要

Integrating compressed sensing (CS) with millimeter-wave (mmW) holography has shown great potential to achieve lightweight onboard hardware, low sampling ratio, and high-speed sensing. However, conventional CS-driven algorithms are always limited by nontrivial adjusting of parameters and excessive computational cost caused by plenty of iterations. To address this problem, we propose a lightweight model-based deep learning framework (LFIST-Net) for mmW 3-D holography, by combining the interpretability of fast iterative shrinkage-thresholding algorithm (FISTA) and tuning-free merit of data-driven deep neural network. First, the single-frequency (SF) holographic imaging technique is integrated into FISTA, which serves as the sensing kernels, to avoid large-scale matrix multiplications. Subsequently, the kernel-based FISTA (KFISTA) is mapped into layer-fixed and parameter-learnable LFIST-Net, whose weights are relaxed to be layer-varied. The updating of key parameters in LFIST-Net, including step sizes, thresholds, and momentum coefficients, are regularized by soft-plus function to ensure the non-negativity and monotonicity. As for 3-D holography implementation, the “1-D + 2-D” scheme is adopted, where the matched filtering (MF) and well-trained LFIST-Net are used for range focusing and reconstructions of azimuth slices. Without losing efficiency, the range-focused subechoes are processed parallelly in 3-D cube form. Experiments, including both simulated and measured tests based on a commercial mmW radar, prove that LFIST-Net is capable of reconstructing the imaging scene precisely. In particular, in near-field mmW 3-D holography tests, both numerical and visual results demonstrate LFIST-Net yields compelling reconstruction performance while maintaining high computational speed compared with MF-based, conventional CS-driven, and network-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助朴素的蘑菇采纳,获得10
刚刚
1秒前
2秒前
evanly发布了新的文献求助10
2秒前
2秒前
GXY完成签到,获得积分10
2秒前
niobium发布了新的文献求助10
3秒前
anan发布了新的文献求助10
3秒前
3秒前
Orange李完成签到,获得积分10
3秒前
Orange应助自由妙竹采纳,获得10
3秒前
4秒前
在水一方应助随便采纳,获得10
5秒前
田様应助xyh采纳,获得10
5秒前
Min发布了新的文献求助10
5秒前
momo发布了新的文献求助10
5秒前
6秒前
7秒前
Roy发布了新的文献求助10
7秒前
dongdong发布了新的文献求助10
8秒前
8秒前
orixero应助朴实小甜瓜采纳,获得10
8秒前
9秒前
9秒前
莫名完成签到,获得积分10
9秒前
柒咩咩完成签到 ,获得积分10
9秒前
艾丽发布了新的文献求助10
9秒前
Ava应助骆驼德96933采纳,获得10
9秒前
9秒前
10秒前
可爱的函函应助森一采纳,获得10
11秒前
王W发布了新的文献求助10
11秒前
11秒前
研友_VZG7GZ应助connieGZ采纳,获得10
12秒前
12秒前
852应助qiang采纳,获得10
13秒前
zxx完成签到 ,获得积分0
13秒前
13秒前
在水一方应助维成采纳,获得10
13秒前
Orange应助流夏采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720067
求助须知:如何正确求助?哪些是违规求助? 5258729
关于积分的说明 15290203
捐赠科研通 4869657
什么是DOI,文献DOI怎么找? 2614906
邀请新用户注册赠送积分活动 1564885
关于科研通互助平台的介绍 1522079