亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight FISTA-Inspired Sparse Reconstruction Network for mmW 3-D Holography

计算机科学 数字全息术 算法 深度学习 人工神经网络 迭代重建 全息术 人工智能 光学 物理
作者
Mou Wang,Shunjun Wei,Jiadian Liang,Shan Liu,Xiaoling Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:11
标识
DOI:10.1109/tgrs.2021.3093307
摘要

Integrating compressed sensing (CS) with millimeter-wave (mmW) holography has shown great potential to achieve lightweight onboard hardware, low sampling ratio, and high-speed sensing. However, conventional CS-driven algorithms are always limited by nontrivial adjusting of parameters and excessive computational cost caused by plenty of iterations. To address this problem, we propose a lightweight model-based deep learning framework (LFIST-Net) for mmW 3-D holography, by combining the interpretability of fast iterative shrinkage-thresholding algorithm (FISTA) and tuning-free merit of data-driven deep neural network. First, the single-frequency (SF) holographic imaging technique is integrated into FISTA, which serves as the sensing kernels, to avoid large-scale matrix multiplications. Subsequently, the kernel-based FISTA (KFISTA) is mapped into layer-fixed and parameter-learnable LFIST-Net, whose weights are relaxed to be layer-varied. The updating of key parameters in LFIST-Net, including step sizes, thresholds, and momentum coefficients, are regularized by soft-plus function to ensure the non-negativity and monotonicity. As for 3-D holography implementation, the “1-D + 2-D” scheme is adopted, where the matched filtering (MF) and well-trained LFIST-Net are used for range focusing and reconstructions of azimuth slices. Without losing efficiency, the range-focused subechoes are processed parallelly in 3-D cube form. Experiments, including both simulated and measured tests based on a commercial mmW radar, prove that LFIST-Net is capable of reconstructing the imaging scene precisely. In particular, in near-field mmW 3-D holography tests, both numerical and visual results demonstrate LFIST-Net yields compelling reconstruction performance while maintaining high computational speed compared with MF-based, conventional CS-driven, and network-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉的钢笔完成签到 ,获得积分0
4秒前
Party完成签到,获得积分10
4秒前
自信日记本完成签到 ,获得积分10
10秒前
GingerF应助着急的冬寒采纳,获得50
12秒前
14秒前
17秒前
小栗子完成签到 ,获得积分10
21秒前
小s发布了新的文献求助10
21秒前
浮游应助念兹在兹采纳,获得10
21秒前
津津发布了新的文献求助10
24秒前
24秒前
TiAmo完成签到,获得积分10
25秒前
27秒前
好主意完成签到,获得积分10
27秒前
隐形曼青应助柯擎汉采纳,获得10
29秒前
30秒前
30秒前
赵娜发布了新的文献求助10
34秒前
35秒前
自然的衫完成签到 ,获得积分10
38秒前
Party发布了新的文献求助10
40秒前
41秒前
44秒前
CC完成签到 ,获得积分10
44秒前
柯擎汉发布了新的文献求助10
51秒前
浮游应助科研通管家采纳,获得10
54秒前
浮游应助科研通管家采纳,获得10
54秒前
58秒前
59秒前
1分钟前
1分钟前
1分钟前
尚青华完成签到 ,获得积分10
1分钟前
津津完成签到,获得积分10
1分钟前
Hhhhh发布了新的文献求助10
1分钟前
LSH970829完成签到,获得积分10
1分钟前
柯擎汉完成签到,获得积分10
1分钟前
LMF完成签到 ,获得积分10
1分钟前
1分钟前
like完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426257
求助须知:如何正确求助?哪些是违规求助? 4540096
关于积分的说明 14171580
捐赠科研通 4457859
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164