亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight FISTA-Inspired Sparse Reconstruction Network for mmW 3-D Holography

计算机科学 数字全息术 算法 深度学习 人工神经网络 迭代重建 全息术 人工智能 光学 物理
作者
Mou Wang,Shunjun Wei,Jiadian Liang,Shan Liu,Xiaoling Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:11
标识
DOI:10.1109/tgrs.2021.3093307
摘要

Integrating compressed sensing (CS) with millimeter-wave (mmW) holography has shown great potential to achieve lightweight onboard hardware, low sampling ratio, and high-speed sensing. However, conventional CS-driven algorithms are always limited by nontrivial adjusting of parameters and excessive computational cost caused by plenty of iterations. To address this problem, we propose a lightweight model-based deep learning framework (LFIST-Net) for mmW 3-D holography, by combining the interpretability of fast iterative shrinkage-thresholding algorithm (FISTA) and tuning-free merit of data-driven deep neural network. First, the single-frequency (SF) holographic imaging technique is integrated into FISTA, which serves as the sensing kernels, to avoid large-scale matrix multiplications. Subsequently, the kernel-based FISTA (KFISTA) is mapped into layer-fixed and parameter-learnable LFIST-Net, whose weights are relaxed to be layer-varied. The updating of key parameters in LFIST-Net, including step sizes, thresholds, and momentum coefficients, are regularized by soft-plus function to ensure the non-negativity and monotonicity. As for 3-D holography implementation, the “1-D + 2-D” scheme is adopted, where the matched filtering (MF) and well-trained LFIST-Net are used for range focusing and reconstructions of azimuth slices. Without losing efficiency, the range-focused subechoes are processed parallelly in 3-D cube form. Experiments, including both simulated and measured tests based on a commercial mmW radar, prove that LFIST-Net is capable of reconstructing the imaging scene precisely. In particular, in near-field mmW 3-D holography tests, both numerical and visual results demonstrate LFIST-Net yields compelling reconstruction performance while maintaining high computational speed compared with MF-based, conventional CS-driven, and network-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzdm完成签到,获得积分10
3秒前
4秒前
汉堡包应助道松先生采纳,获得10
6秒前
9秒前
charlotte发布了新的文献求助10
13秒前
32秒前
38秒前
土书发布了新的文献求助10
42秒前
47秒前
48秒前
道松先生发布了新的文献求助10
52秒前
58秒前
SciGPT应助Cala洛~采纳,获得10
1分钟前
好好笑发布了新的文献求助10
1分钟前
大胆绮应助andrele采纳,获得10
1分钟前
1分钟前
1分钟前
藤椒辣鱼应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
FashionBoy应助Pristine采纳,获得10
1分钟前
187798完成签到,获得积分10
1分钟前
Jyy77完成签到 ,获得积分10
1分钟前
土书完成签到,获得积分10
1分钟前
传奇3应助128536采纳,获得10
1分钟前
一路微笑完成签到,获得积分10
2分钟前
爱静静完成签到,获得积分0
2分钟前
沙沙完成签到 ,获得积分10
2分钟前
llk完成签到 ,获得积分10
2分钟前
彭于晏应助江小霜采纳,获得10
2分钟前
2分钟前
Omni完成签到,获得积分10
2分钟前
道松先生发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大胆绮应助道松先生采纳,获得10
2分钟前
Suyi完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Relativism, Conceptual Schemes, and Categorical Frameworks 500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445093
求助须知:如何正确求助?哪些是违规求助? 3041057
关于积分的说明 8983751
捐赠科研通 2729643
什么是DOI,文献DOI怎么找? 1497107
科研通“疑难数据库(出版商)”最低求助积分说明 692155
邀请新用户注册赠送积分活动 689674