已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lightweight FISTA-Inspired Sparse Reconstruction Network for mmW 3-D Holography

计算机科学 数字全息术 算法 深度学习 人工神经网络 迭代重建 全息术 人工智能 光学 物理
作者
Mou Wang,Shunjun Wei,Jiadian Liang,Shan Liu,Xiaoling Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-20 被引量:11
标识
DOI:10.1109/tgrs.2021.3093307
摘要

Integrating compressed sensing (CS) with millimeter-wave (mmW) holography has shown great potential to achieve lightweight onboard hardware, low sampling ratio, and high-speed sensing. However, conventional CS-driven algorithms are always limited by nontrivial adjusting of parameters and excessive computational cost caused by plenty of iterations. To address this problem, we propose a lightweight model-based deep learning framework (LFIST-Net) for mmW 3-D holography, by combining the interpretability of fast iterative shrinkage-thresholding algorithm (FISTA) and tuning-free merit of data-driven deep neural network. First, the single-frequency (SF) holographic imaging technique is integrated into FISTA, which serves as the sensing kernels, to avoid large-scale matrix multiplications. Subsequently, the kernel-based FISTA (KFISTA) is mapped into layer-fixed and parameter-learnable LFIST-Net, whose weights are relaxed to be layer-varied. The updating of key parameters in LFIST-Net, including step sizes, thresholds, and momentum coefficients, are regularized by soft-plus function to ensure the non-negativity and monotonicity. As for 3-D holography implementation, the “1-D + 2-D” scheme is adopted, where the matched filtering (MF) and well-trained LFIST-Net are used for range focusing and reconstructions of azimuth slices. Without losing efficiency, the range-focused subechoes are processed parallelly in 3-D cube form. Experiments, including both simulated and measured tests based on a commercial mmW radar, prove that LFIST-Net is capable of reconstructing the imaging scene precisely. In particular, in near-field mmW 3-D holography tests, both numerical and visual results demonstrate LFIST-Net yields compelling reconstruction performance while maintaining high computational speed compared with MF-based, conventional CS-driven, and network-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧萧完成签到,获得积分10
3秒前
槿曦完成签到 ,获得积分10
4秒前
急雪回风完成签到,获得积分10
7秒前
17秒前
深情安青应助wwwwww采纳,获得10
18秒前
折木浮华发布了新的文献求助10
20秒前
microlite完成签到,获得积分10
21秒前
yarkye完成签到,获得积分10
24秒前
cjh发布了新的文献求助10
25秒前
小赵发布了新的文献求助10
25秒前
无花果应助折木浮华采纳,获得10
26秒前
善学以致用应助周而复始@采纳,获得10
26秒前
西门浩宇完成签到 ,获得积分0
37秒前
诚心的信封完成签到 ,获得积分10
38秒前
能干的雨完成签到 ,获得积分10
40秒前
43秒前
45秒前
study666完成签到,获得积分10
46秒前
darkpigx完成签到,获得积分10
46秒前
阿拉香香发布了新的文献求助10
47秒前
48秒前
49秒前
手术刀完成签到 ,获得积分10
50秒前
bkagyin应助萧萧采纳,获得10
50秒前
白开水发布了新的文献求助10
51秒前
优雅沛文完成签到 ,获得积分10
52秒前
周而复始@发布了新的文献求助10
53秒前
jbtjht发布了新的文献求助10
53秒前
DChen完成签到 ,获得积分10
55秒前
科研通AI5应助小巧念露采纳,获得10
55秒前
周而复始@完成签到,获得积分10
57秒前
Starry完成签到 ,获得积分10
59秒前
诸葛带你做分析_yorfir完成签到,获得积分0
59秒前
jbtjht完成签到,获得积分10
1分钟前
1分钟前
Hayat应助令宏采纳,获得10
1分钟前
该房地产个人的完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Peng0514完成签到,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166765
捐赠科研通 3248426
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629